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ABSTRACT
Automated Trading Systems are constantly increasing their impact
on financial markets, but learning from historical data, detecting
interesting patterns and producing profitable strategies are still
challenging objectives for autonomous agents. This holds true es-
pecially in the intraday Foreign Exchange market, where prices are
heavily affected by random noise and high non-stationarity. In this
volatile market, opportunities are present at many time-scales, but
not all of them can be easily learnt. The signal-to-noise ratio has,
indeed, a critical impact on the ability of autonomous agents to
learn effectively. In this paper, we formulate multi-currency trading
as a Markov Decision Process and we train an agent via Fitted-Q
Iteration, a Reinforcement Learning value-based algorithm. Focus-
ing on a three-currencies framework, we study the importance of
tuning the control frequency, in order to obtain effective trading
policies. We backtest the developed approaches on real data from
the FX market considering two currency triplets, comparing results
employing either a single pair or both ones at the same time.

CCS CONCEPTS
• Theory of computation → Sequential decision making; •
Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Trading is a sequential decision problem, where the agent needs
to decide in an almost continuous fashion what position to hold in
order to maximize returns. Changing allocation too often, though,
can cause high transaction costs, hence, planning ahead is impor-
tant. It is possible to model such a sequential decision problem in a
discrete time setting as a Markov Decision Process (MDP), where
the artificial trading agent observes at each time-step information
from the market and decides which portfolio to hold. A changing
position implies a trading cost, together with a profit or loss (p&l),
which is generated depending on the position and the market move-
ment. Since the dynamics of this process is unknown, this MDP
have to be solved through the use of Reinforcement Learning (RL)
[36]. The application of RL algorithms to financial trading, using
only market information, has revealed to be successful since the
seminal work of [31]. This approach aims at finding and leveraging
patterns in the market, focusing on strategies that may span from a
few minutes to a few hours, by directly training a machine learning
algorithm to learn autonomously from historical data [15].

However, even if trading opportunities are present at many dif-
ferent time-scales, learning them is not equally difficult. While most
of the autonomous agents that populate the market today operate at
a very high frequency, their behavior is usually hard-coded, since at
such a time-scales (milliseconds) the main opportunities are consti-
tuted by ephemeral arbitrages. On the other hand, operating at very
low frequency (e.g. days, months) is impossible without including
exogenous inputs regarding the market, such as economical data
releases or, more generically, any news having a market impact.
Operating with a middle frequency (e.g. minutes, hours) is, indeed,
the more suitable scenario for a machine learning task. As we will
further discuss, precisely determining the best time-scale for the
learning process, is fundamental to learn profitable policies. In fact,
while higher frequencies always allow, in principle, for better con-
trol, they may present a worse signal-to-noise ratio, which can
deeply impact the learning performance [29].

We study the Foreign Exchange (FX) market: our goal is to apply
RL techniques to the multi-currency setting, evaluating the impact
of learning strategies with different frequencies. In particular, we
focus on the application of a batch RL algorithm, called Fitted-Q
Iteration (FQI), which allows for an efficient use of the historical
data. From a financial viewpoint, the problem is tackled from a
quantitative trading perspective: we operate with assets which are
highly liquid in order to trade intraday without market impact,
with the possibility of easily going long and short. In order to
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reduce as much as possible execution delays and to deal with an
execution schedule which can be pretty crowded, we assume the
algorithm to be directly connected to the financial markets. Aiming
at a realistic environment, we consider transaction costs, which
are taken into account by the agent when constructing the trading
strategies. We assume a relatively small trading size, which does not
cause market impact (slippage), so to simplify the transaction costs
definition. While the experimental analysis is totally focused on
the FX scenario, the developed techniques can be easily extended
to deal with any multi-asset task in a liquid market.

Contributions. The contribution of this paper is twofold and
mainly empirical. Foremost, for the first time, we analyze the per-
formance of FQI on a multi-asset trading scenario in a realistic
setting i.e. with real data and transaction costs. Secondly, we ex-
perimentally study the impact of different trading frequencies on
the performance of the learnt trading strategy.

Outline. This paper is organized as follows: in Section 2 we
introduce the Reinforcement Learning background and FQI algo-
rithm, with the inclusion of subsections dedicated to the definition
of action persistence. In Section 3 we recall several works related
to our framework, which is presented and formulated in Section 4:
among the main contributions, we recall the problem formulation
involving a multi-currency setting with transaction costs. The nu-
merical results are presented in Section 5, then followed by some
final considerations, in Section 6.

2 BACKGROUND
2.1 Reinforcement Learning
Reinforcement Learning is built over the concept of discrete-time
Markov Decision Process (MDP) [33], describing the interactions be-
tween an agent and its environment. The MDP can be represented
as a tuple ⟨S,A,P,R, 𝛾, 𝜇⟩, where the (continuous) set S is the
space of the possible states of the environment. The (continuous)
set A gathers the actions that the agents can perform. The transi-
tion model P(·|𝑠, 𝑎) gives the probability to reach state 𝑠 ′ for each
state-action pair (𝑠, 𝑎). The reward distribution R characterizes the
reward 𝑅(𝑠, 𝑎) collected by the agent resulting by applying action 𝑎
in state 𝑠 . In this work, we assume that R is bounded. The discount
factor 𝛾 ∈ [0, 1) drives the agent to balance instant rewards for
future rewards. Finally, 𝜇 is the distribution of the initial state of
the environment.

In RL the agent selects its action based on a policy, 𝜋 (·|𝑠), which
assigns a distribution over the action space A to each state 𝑠 . From
it, we can define the goal of the agent as the maximization over
its policy space of its expected discounted sum of reward over a
trajectory of horizon𝑇 , also called return. For a policy 𝜋 the return
is defined as

𝐽𝜋 B E
𝑠0∼𝜇

𝑎𝑡∼𝜋 ( · |𝑠𝑡 )
𝑠𝑡+1∼P(· |𝑠𝑡 ,𝑎𝑡 )

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]
.

In this work, we consider only the set of stationary Markovian
policies. This is not restrictive since this set is proven to contain
the optimal policy [33]. Another quantity of interest, which will
be useful for this work is the action-value function associated to

some policy 𝜋 . This function gives the expected discounted future
reward started from state 𝑠 and taking 𝑎 as a first action. It reads

𝑄𝜋 (𝑠, 𝑎) B E
𝑠𝑡+1∼P(· |𝑠𝑡 ,𝑎𝑡 )
𝑎𝑡+1∼𝜋 ( · |𝑠𝑡+1)

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎

]
. (1)

Closely related to the function 𝑄 is the Bellman operator 𝑇𝜋 asso-
ciated to a policy 𝜋 :

(T𝜋𝑄) (𝑠, 𝑎) = R(𝑠, 𝑎) + 𝛾 E
𝑠′∼P(· |𝑠,𝑎)
𝑎′∼𝜋 ( · |𝑠′)

[
𝑄 (𝑠 ′, 𝑎′)

]
.

The two concept are linked in that𝑄𝜋 is a fixed point ofT𝜋 . Notably,
the result holds also for the optimal policy 𝜋∗ which is the fixed
point of the optimal Bellman operator T ∗:

(T ∗𝑄) (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 E
𝑠′∼𝑃 ( · |𝑠,𝑎)

[
max
𝑎′∈A

𝑄 (𝑠 ′, 𝑎′)
]
. (2)

By the Banach-Caccioppoli fixed point Theorem [3] we can thus
obtain 𝑄∗ = 𝑄𝜋 starting from any action-value function 𝑄 by
recursively applying the optimal Bellman operator.

2.2 Fitted Q Iteration
Fitted Q Iteration (FQI) [14] is a RL algorithm which adopts the
previous optimal Bellman operator. Its power lies in that it learns
the action-value function over a space of functions by leveraging
Supervised Learning techniques in order to generalize the knowl-
edge from training dataset to unseen samples inS×A. The training
set is composed of 4-tuples (𝑠, 𝑎, 𝑟, 𝑠 ′), with 𝑠 the state, 𝑎 the applied
action, 𝑟 the resulting reward and 𝑠 ′ the next state. This set of exam-
ples can be collected once and for all at the beginning of the training
since FQI is an offline algorithm. The𝑄-function learnt by FQI is ini-
tialized by approximating the rewards from the state-action pairs in
the training set. Then from an iteration 𝑁 to the next, the previous
approximation 𝑄𝑁 is used to train 𝑄𝑁+1 to approximate the opti-
mal Bellman operator with 𝑟 +𝛾 max𝑎∈A 𝑄𝑁 (𝑠 ′, 𝑎). Two conflicting
phenomena appear when training FQI. On the one hand, the higher
the number of iterations, the more the future outcomes are taken
into account in the computation of the𝑄-value of each state-action.
At each iteration, the horizon considered increases by one step. On
the other hand the regression of the 𝑄-function introduces errors,
which are propagated through the value iterations, preventing the
𝑄 function from converging. Thus, a trade-off is usually observed
in determining the best number of iterations.

2.3 Extra Trees
In this work, we use extremely randomized trees (Extra Trees) [17]
as the regression algorithm used by FQI to learn the 𝑄-function.
Extra Trees are based upon decision trees [7] which work by par-
titioning the dataset, iteratively cutting each subset in two. The
cutting threshold is randomized on two levels, hence the term ex-
tremely randomized. First, an attribute of the data is chosen at ran-
dom then several thresholds for the cut are also chosen at random.
Then the best threshold among them is selected under some crite-
ria such as the Gini index or the mean-squared error. This double
randomization makes the elementary regressors more uncorrelated
with each other, reducing the variance of Extra Trees. This itera-
tive process ends when the number of elements in each leave is
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below a previously determined threshold called themin_split. Extra
Trees uses a relatively important number of trees whose predictions
are averaged in order to further reduce the variance of the final
prediction.

An useful property of Extra Trees is that they produce an es-
timate of the importance of the features in predicting the target.
The importance of a feature is measured as the normalized gain
in terms of Gini impurity index obtain by partitioning the dataset
using that feature. The higher, the more important the feature. As
a consequence, features can be ranked in order to establish which
are the most informative to predict the target.

2.4 Persistent action
In RL continuous time control problems are typically addressed by
means of time discretization inducing a certain control frequency.
On one hand a higher control frequency, especially in trading and
finance, gives the agent more control opportunities; on the other
hand a too fine time discretization shows several drawbacks, as
for example an increase of sample complexity due to the reduced
effects of the single actions. Moreover, as specified in Section 2.2,
an increasing number of FQI iterations leads to a larger planning
horizon and a propagation of regression errors. Hence there is a
trade-off between the possibility to detect immediate opportunities
and the learning capabilities. [29] introduces the idea of action
persistence, which consists in the repetition of each individual
action for a number of consecutive steps. Given a discrete-timeMDP
M = ⟨S,A,P,R, 𝛾, 𝜇⟩ modeled at the highest possible control
frequency, persistence can be seen as an environmental parameter
𝑘 which can be configured to generate a family of related decision
processesM𝑘 = ⟨S,A,P𝑘 ,R𝑘 , 𝛾

𝑘 , 𝜇⟩ in which, whenever an action
is issued, the resulting transition lasts for 𝑘 steps, with all the one-
step rewards collected (with discount) in the new distribution R𝑘 .

3 RELATEDWORKS
RL for trading. RL applications to finance have drawn more

and more attention for its goal being well aligned with trading
objectives [2, 15, 28]. First applications to trading using Recurrent
RL (RRL) have shown promising results [18, 31]. Later works have
confirmed this direction in a variety of contexts, including high
frequency trading using order book information [8] with Proxi-
mal Policy Optimization [34] or stock trading using OHLCV (open,
high, low, close and volume) data [37] with Deep Q Network (DQN)
[30]. Of particular interest for our application, a number of works
have focused on the trading of single Forex currency pairs. The
approaches include RRL on several currency pairs [18], Q-learning
for GBP-USD [11], DQN on EUR-USD and USDJPY [9, 35], FQI on
EUR-USD [4], DQN on 12 currency pairs [21]. Experiments on the
Forex are promising as highlighted by [35] whose agent outper-
forms an experienced trader on EUR-USD. Approaches consisting
of value-based approaches such as DQN and FQI are closer to ours
in essence.

RL for multi-asset trading. To the best of our knowledge,
using RL to trade simultaneously more than one currency pair
has not been evaluated on the Forex. However, RL framework has
already been employed for other multi-asset trading tasks. For
example, [24] appliedDeepDeterministic Policy Gradient [25] using

past price information to the allocation of a portfolio of 12 crypto-
currencies. In that case, the agent is allowed to interact with its
environment every 30 minutes. Their results are inspiring since
their algorithm surpasses a wide range of benchmarks from the
literature. Adopting an approach similar to [24], [22] consider the
daily re-balancing of 24 US stocks. Other works on multi-asset
investment include [23] which learn a meta-policy with Q-learning
to select which trader’s allocation proposition to follow from a set
of traders. [20] consider the daily trading 30 stocks from the Dow
Jones. Interestingly, the authors consider an ensemble approach and
select for the next testing period the RL algorithm which obtained
the best Sharpe Ratio in the previous periods.

Trading time-scale. Due to the diversity of market participants
and investment strategies [6, 27], it is reasonable to consider that
the market is built upon different time-scales. This property is
included inside the Adaptive Market Hypothesis (AMH) [1, 12]
which extends the Efficient Market Hypothesis (EMH) to add the
possibility that investors adapt their investment decisions based
on new information. The AMH is often tested through the lens
of multifractal analysis [26] to study the scaling laws of financial
time series. If a time-series exhibits a mutlifractal behavior, then
it does not have a characteristic scale. This implies that whatever
the trading horizon, the scaled opportunities will be the same. In
particular, experiments suggest that such is the case for time series
from the Forex for a variety of scales [10, 16].

In the field of RL for trading, the study of the impact of the trading
time-scale hasn’t been a primary focus. Most works do not consider
changing the frequency of interaction with the environment even
though the variety of time-scales across papers ranges from high-
frequency to daily to even longer periods. We note however that
[32] compares quarterly, semi-annual and annual frequencies and
find the latter to offer the best performance. This can be partly
explained because the hyper-parameters have been tuned for the
annual frequency but the author also suggests that it could be
explained by the different probability distribution of the returns
which would favor riskier but more profitable assets. Some previous
works highlight the effect of assumptions on the trading frequency,
such as transaction costs [13] or the agent’s risk aversion [4]. The
authors do not change the basis time-scale but the agent learns by
itself to act with a lower frequency.

4 PROBLEM FORMULATION
4.1 MDP model for Forex trading
We model a generic trading task on a single asset as an MDP with
a discrete action set. In the simplest case, three possible allocations
are sufficient: 𝐿𝑜𝑛𝑔, 𝑆ℎ𝑜𝑟𝑡, or 𝐹𝑙𝑎𝑡 . These actions are referred to a
fixed quantity of an asset we want to trade. Concerning the reward,
the following formula is used:

𝑅𝑡+1 = 𝑎𝑡 (𝑃𝑡+1 − 𝑃𝑡 )︸          ︷︷          ︸
p&l from market changes

− 𝑓𝑡 |𝑎𝑡 − 𝑎𝑡−1 |︸         ︷︷         ︸
transaction costs

(3)

where 𝑠 is the portfolio, 𝑎 is the action, 𝑃 is the price of the asset
expressed in some currency, and 𝑓 is the fee multiplier. The first
part consists in the gain (loss) derived from trades, and the second
one corresponds to costs due to changing allocation.
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While allocating a fixed amount of money could seem to be a
limiting assumption, this is indeed sufficient when our goal is to
maximize the expected return, as in a standard risk-neutral RL task.
To be more specific, we can consider traders who believe the price
of some asset is about to increase. In that case, there is no reason for
them to buy only a fraction of the asset, hence, the discretization
we use is sufficient. However, if they want to keep also the risk
under control, then a continuous action space is desirable [5]. In
mathematical terms, as soon as reward and return are essentially
linear in the allocation, the problem is invariant by a global rescaling
of the action. Instead, the introduction of non-linearities breaks the
scale invariance by introducing dimensionful parameters either in
the reward or in the return, so that reducing the allocation space
implies a constrained optimization, with the possibility of reaching
suboptimal extremes only.

The fact that our action space is discrete allows us to resort to
value-based techniques otherwise unfeasible. We leave the exten-
sion to risk-averse trading to future research.

Two-currencies Forex trading. In the Forex market the traded
asset is not a stock but a currency instead. This poses the question
on how to value trades, leading to the definition of a domestic or
base currency and a foreign currency, where we are interested in
maximizing the domestic one (e.g. depending on which country a
company is based in). Two options are then viable: trading a fixed
quantity of the foreign currency for some variable amount of the
domestic, or, vice versa, setting a fixed amount of base currency to
trade. We are interested in the second case since, from a financial
point of view, this allows an easier characterization of the risk ex-
position. With respect to the general model mentioned earlier, it is
possible to see that this corresponds to treating the base currency
as an asset, where in place of the price 𝑃𝑡 we have the instanta-
neous exchange rate. As a result, rewards would be expressed in
the foreign currency. However, in order to have an effective evalua-
tion for the artificial agent’s performances, it might be desirable to
have all the returns expressed in the same measure unit, avoiding
then to have them split in multiple currencies. Thus, we assume to
convert the collected rewards on a daily basis. However, in order to
avoid an a-posteriori conversion, we consider the following reward
𝑅𝑡+1 B

𝑅𝑡+1
𝑃𝑡+1

, which uses the instantaneous exchange rate in place
of the one at the end of the day. If we assume that exchange rates do
not vary much during a trading day, and that the transaction cost
for a daily conversion is negligible, we can consider the previous
formula a fair approximation. We assume that the dynamics of the
MDP is not controllable for what concerns the exchange rates. This
means that the allocations are not large enough to move the mar-
ket. The only feature of the state which is affected by the agent’s
actions is its current allocation. The considered episodes are only
one business day long, with 1-minute long time-steps, hence, we
use the undiscounted setting (i.e. we set 𝛾 = 1).

Since the state of the market is clearly impossible to observe, the
following features will be used instead:

• the last 60 exchange rate variations1 between consecutive
minutes;

• the corresponding time of the day, expressed in minutes;
1Computed as the differences between the price at a certain time-step and the previous
one, normalized by the value of the former one.

GBPUSD

EURUSD

lon
g

lon
g

sh
or
t

sh
or
t

Figure 1: Three currency model. In this case, the domestic
currency is USD, while EUR and GBP are the foreign ones.
The dots (including the origin) represent the possible port-
folio positions. In order to switch from a long position in
GBP-USD pair to the same position applied on EUR-USD, the
agent needs to pay twice the transaction fees for closing one
position, and opening the new one (blue path).

• the current portfolio position w.r.t. the currency pairs,
which may assume the same values as the actions.

Three-currencies Forex trading. In this work we consider also
a three-currencies scenario, with two foreign currencies and a base
(domestic) one. This scenario can be seen as a trading task in which
two assets can be traded, hence, we have to adapt the correspond-
ing MDP accordingly. Concerning the allocations, we disallow the
positions involving simultaneous allocations on different foreign
currencies. This is not restrictive since we are pursuing a risk-
neutral objective. In practice, this means that it is only possible
to be long/short w.r.t to one pair at each timestep2. Therefore, we
allow the agent to take the 5 possible positions which correspond
to being long (or short) w.r.t. each of the foreign currencies, or to
being flat w.r.t both, as shown in Figure 1. The agent can switch
from a currency pair to the other one in just one step. However,
this transition is considered as the composition of two operations:
the transition from 𝑎𝑡 to the flat allocation, and the transition from
the latter one to 𝑎𝑡+1. Consequently, such operations would in-
volve a doubled transaction cost. We expect the three-currency
scenario to be more profitable, since the agent, at each timestep,
has more instruments to choose among, hence, it may exploits trade
opportunities on both sides.

5 EXPERIMENTS
In this section, we describe how we applied FQI to the three-
currency setting based on real Forex Data and we compare the
results we obtained with the performances of the two-currencies
models. Market data were collected from 2017 to 2020 from the
Histdata platform [19]. A fixed 100𝑘$ allocation was considered
and, based on that, the fee 𝑓𝑡 has been set to 1$. Performances are
shown as percentages of the invested amount.

2Similarly to what we mentioned before, splitting the allocation between two currency
pairs is inefficient if the goal is return maximization.



Learning FX Trading Strategies with FQI and Persistent Actions ICAIF’21, November 3–5, 2021, Virtual Event, USA

Figure 2: For each of the different currency pairs combinations, the cumulative returns on 2020 (test) of the best model are
reported for each persistence value. Results are shown together with B&H and S&H baselines. Performances are reported as
percentages w.r.t. the invested amount.

5.1 Dataset Generation
As explained in Section 2.2, the FQI training set is composed by a
series of tuples, each of which contains the current state, the action
of the agent, the next state and the reward. To build the dataset,
starting from the collected market quotations, we first filtered them
in order to focus on the Europe daily timewindow from 8:00 to 18:00
CET.3 We then added the 60 consecutive normalized rate differences
and the time of the day to each state. Finally, we associated to each
pair (𝑠, 𝑠 ′) all the possible portfolio-action configurations and the
correspondent rewards, computed using Equation 3.

5.2 Model Selection
In order to select the best FQI model, we had to tune both the
hyperparameters related to the Extra Trees regressors and the ones
which characterize the general training algorithm.

Extra Trees are defined by different main parameters: the num-
ber of trees, the minimum number of leaves, the minimum number
of features randomly selected before each split and the minimum

3Central European Time. This choice is motivated by the fact that two out of the three
considered currencies are European, and that this is the time with the highest traded
volumes; the remaining time has been excluded for the lower trading volumes, to make
the approach more consistent and robust.

number of data points a node must have in order to be split again.
Based on our experience and following what is suggested in [17],
given a reasonable number of trees that guarantees a good trade-off
between high computational time and low variance of the estima-
tion, only the minimum sample size of nodes has to be tuned to
regulate the model complexity. Typically, the higher this so-called
𝑚𝑖𝑛_𝑠𝑝𝑙𝑖𝑡 threshold is, the simpler is the trained model, because
trees are forced to use a greater number of samples to perform a
split, hence complicated patterns are excluded. On the other hand,
a low𝑚𝑖𝑛_𝑠𝑝𝑙𝑖𝑡 threshold allows for more complex models, but it
also increases the risk of overfitting the training data.

The training algorithm, instead, is characterized only by the num-
ber of iterations. As the number of iterations grows, the optimized
horizon increases, allowing the model to learn longer-term patterns.
However, iterating the 𝑄-function fitting procedure leads to the
propagation of the approximation error. Therefore, we have to deal
with the trade-off between extending the optimization horizon and
propagating approximation errors through iterations.

In order to analyze the impact of persistence on the algorithm
performances, we chose to consider three different values (1, 5 and
10) w.r.t. a 1-minute sampling frequency, both in the multi-currency
setting and in the single-currency one. Then we train each model
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Figure 3: Portfolio allocation chosen by the agent of the three-currencies model trained with persistence equal to 10. Each row
corresponds to a different business day, and each column is specific for a trading minute.

Figure 4: Validation performances for the USD-EUR case
with persistence equal to 1 are shown. The final cumulative
return, averaged over two seeds, is reported for each iteration,
and for the different values of the𝑚𝑖𝑛_𝑠𝑝𝑙𝑖𝑡 parameter. The
selected model is highlighted with a red dot. Performances
are reported as percentages w.r.t. the invested amount.

using two different𝑚𝑖𝑛_𝑠𝑝𝑙𝑖𝑡 thresholds and fixing the maximum
number of iterations to 5. Moreover, in order to take into account
the randomness of Extra Trees regressors, we perform 2 different
runs for each set of hyperparameters. Given the models trained on
2017-2018 data, we validate their performances using 2019 rates,
in order to select the best𝑚𝑖𝑛_𝑠𝑝𝑙𝑖𝑡 and iteration. For each value
of the persistence, we selected as best hyperparameters set the
one with the highest average cumulated return. This procedure is
exemplified for the USD-EUR case in Figure 4.

Finally we test the performance of these models in 2020.

5.3 Results
In order to evaluate the selected models, we present two comple-
mentary analyses: first, we focus on the impact of the persistence
both in the two-currencies setting and in the three-currencies one,
by comparing the cumulative returns obtained by the trained mod-
els with some baseline strategies; then we move to the comparison
between the performances of the three-currencies models and the
two-currencies ones, for every value of the persistence. We sum-
marize the performance of the best models selected for each triplet
in Table 1, and we show the cumulative returns through time for
each setting in Figure 2.

Impact of the persistence. We decide to compare the perfor-
mance of the two-currencies models with two benchmark strategies:
the Buy&Hold and the Sell&Hold. Both are passive strategies that
consist in keeping a constant position, respectively, long or short.
As shown in Figure 2, excluding the Australasian three-currencies
setting where all the models yield nearly the same cumulative re-
turn on 2020, in the European framework, all models trained with
persistence equal to 5 and 10 outperform the ones trained with
persistence equal to 1 and both the benchmark strategies. The poor
performances of the models with persistence equal to 1 can again
be explained by the worse signal-to-noise ratio which deeply af-
fects learning using high frequencies. Only the performances of the
models trained to trade the USD-NZD currency pair are particularly
poor for every value of the persistence. This is probably due to the
fact that this is the less liquid currency pair among all the ones
considered in this paper, which is translated into a major difficulty
for the agent to find profitable patterns during the trading hours.

Looking at the policies learned by the models, another relevant
fact to notice is that the higher the persistence is, the better the
agent exploits temporal patterns. As we can observe in Figure 3,
these patterns can be identified by looking for vertical stripes of the
same color in the allocation heatmaps. These stripes becomes much
more evident as the persistence increases. For instance, the agent
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Table 1: performances of the selected models (best𝑚𝑖𝑛_𝑠𝑝𝑙𝑖𝑡 MS and iteration Ite) for each persistence (Pers). The measures
are P&L (mean ± standard deviation), Sharpe ratio and maximum drawdown (MDD) as a percentage of the 100𝑘 $ allocation.
Left: performance of the models EUR-USD, GBP-USD, and EUR-USD-GBP (Both). Right: performance of the models AUS-USD,
NZD-USD, and AUS-USD-NZD (Both).

Pers MS Ite P&L (%) Sharpe Ratio MDD (%)

EU
R 1 45k 7 −1.45 ± 1.16 −0.22 9.28

5 60k 1 6.91 ± 2.63 1.34 4.83
10 45k 6 1.65 ± 1.99 0.27 6.16

G
BP

1 45k 1 −11.30 ± 3.05 −1.37 14.89
5 45k 2 14.29 ± 4.65 1.93 7.66
10 45k 9 6.43 ± 1.57 0.63 10.54

Bo
th

1 75k 3 −10.12 ± 3.64 −1.45 15.63
5 60k 1 14.83 ± 7.34 2.02 7.96
10 75k 7 3.00 ± 3.40 0.33 11.07

Pers MS Ite P&L (%) Sharpe Ratio MDD (%)

A
U
S 1 45k 6 −15.14 ± 1.22 −1.74 16.46

5 45k 7 3.63 ± 0.84 0.40 8.60
10 45k 1 8.83 ± 2.11 0.88 10.97

N
ZD

1 60k 1 −11.17 ± 2.69 −1.18 −20.09
5 60k 1 0.90 ± 2.33 0.10 15.76
10 45k 2 −0.45 ± 3.57 −0.05 16.63

Bo
th

1 90k 1 8.42 ± 1.24 0.87 7.47
5 75k 3 10.09 ± 2.74 1.13 8.56
10 75k 1 6.80 ± 1.08 0.81 6.90

Figure 5: Feature importance of USD-EUR models trained with different persistences. The importance of a feature is measured
as the normalized gain in terms of Gini impurity brought by that feature. Only the 20 most important features are shown for
each setting.

of the European three-currencies model trained with persistence
equal to 10 learned to be long w.r.t USD-GBP during the first hour
of most of the days, then it usually changes the portfolio allocation
moving to a short position w.r.t USD-EUR and keeping it until 10:00.
Some of these patterns are associated with particular events which
characterize the trading day: when american traders enter in the
FX market around 14:00, the agent usually changes its position
with respect to USD-EUR from long to short. The existence of a
relationship between temporal patterns and the value of persistence
is corroborated by the analysis of the feature importances. In fact,
looking at the feature importances of USD-EUR models shown
in Figure 5, three interesting facts can be observed. First, more
recent exchange rate variations are more relevant than older ones
independently of the value of persistence. Second, the importance of
time-related features, (i.e., time andweekday), becomes significantly
higher as the persistence increases. Finally, the importance of the
portfolio feature is the highest in the first two plots, but it becomes
less relevant for persistence equal to 10. This feature is important

to predict costs, thus, its presence in the top positions of the feature
importance histogram is indicative of how much costs impact a
certain setting.

Besides the better performance obtained, a higher persistence
allows also to have computational advantages. Given the same
number of iterations, the optimization horizon becomes shorter as
the persistence decreases. Therefore, higher persistences optimize
on longer horizons, using the same number of iterations. Moreover,
we also noticed that the mean time per iteration decreases with the
persistence, even if the sample size of the FQI training set is the same.
By inspecting the resulting models, we found out that the regressor
trees obtained with persistence equal to 1 are characterized by
almost double the number of nodes and leaves w.r.t. the ones with
higher persistence. This may be due to the impact of the noise
embedded in the data, which increases with lower persistences.
These noisier samples make the fitting process harder, hence, a
more complex model is needed.



ICAIF’21, November 3–5, 2021, Virtual Event, USA Riva, Bisi, Liotet, Sabbioni et al.

Figure 6: For each one of the different persistences, the selected models from each setting are compared w.r.t. their cumulative
returns on 2020. Performances are reported as percentages w.r.t. the invested amount.

Three-currencies and two-currencies models. In Figure 6 we
compared the performances of the three-currencies models and the
two-currencies ones for every value of the persistence. Although
they do not consistently outperform the two-currencies models
through the whole year, it can be observed that three-currencies
models, they are the ones which give the best average returns on
both settings (see also Table 1). Moreover, it is notable that the three-
currency model obtains positive performance in the Australasian
setting even with persistence equal to 1.

Finally, it is worth noting that the performances of all the models,
both in the two-currencies setting and in the three-currencies one,
are strongly affected by multiple drawdowns registered between
March andMay of 2020, whichmight be related to the high volatility
and unpredictability of the Forex market due to the spread of the
Covid-19 pandemic. This strong impact of the pandemic can also be
observed by looking at the portfolio allocations displayed in Figure
3, where it can be easily noticed how the solid temporal patterns
learned by agent do not hold during the whole month of March,
when the pandemic exploded. Nevertheless, higher persistence
models were able to recover from the drawdown, ending up with
a positive cumulated return. Furthermore, for what concerns the
Sharpe Ratio, we can notice from Table 1 that single currency pair
selected model obtain acceptable values, and the two-pairs one has
an even better performance.

6 CONCLUSION
The Foreign Exchange market represents a major challenge for
AI-based trading, because of its intrinsic difficulty in detecting
profitable patterns due to the volatility and the non-stationarity of
the exchange rates. In this paper we have developed an Automated
Trading System based on Fitted Q-Iteration, a batch Reinforcement
Learning algorithm where the agent, while observing the rates on
a 60-minutes time window, can evaluate the effects of his possible
portfolio allocations on a historical dataset. The formulation of the
model is built upon a multi-currency framework, where multiple
currency pairs can be analyzed in such a way that the agent can
leverage the best trade opportunities he finds, with the transaction
fees forcing it to plan the portfolio allocations with a larger horizon.
Consequently, this raises some interesting questions regarding the
optimal trading frequency, since the agent experiments a trade-off
between the choice of a higher control frequency, which can bring
more control opportunities, and a lower one, leading to a gain in
terms of sample complexity and in planning horizon. Indeed, the
results show that the agent acting once every 5 minutes can detect
patterns more easily than the one acting every minute and the one
keeping (persisting) its position for 10 minutes.

There are several possible future research directions directly re-
lated to our work. First of all, in our formulation, the three-currency
framework is modelled as a portfolio with two assets: when the



Learning FX Trading Strategies with FQI and Persistent Actions ICAIF’21, November 3–5, 2021, Virtual Event, USA

agent chooses to change asset, it is forced to pay twice the trans-
action costs. If we keep into consideration the fact that we are
dealing with currencies, we can take into account the missing pair
of the triplet, which is never involved in this work. Secondly, in
order to have a more realistic setting, many of the assumptions
we took can be dropped. Transaction costs, instead of being fixed,
should reflect the market behaviour, hence, they should include the
instantaneous bid-ask spread for each portfolio adjustment. Exe-
cution times could be taken into account, evaluating the impact of
a delay in the allocations. Future works could explicitly take into
account non-stationarity, by employing, e.g., sliding-window ap-
proaches. Finally, there is the need for financial traders to measure
the risk of their portfolio positions: a rich stream of Reinforce-
ment Learning literature is devoted to study risk-aversion, and
it has developed algorithms to optimize different risk-measures.
Current performances are deeply conditioned by the presence of
drawdowns, which a risk-averse optimization may avoid. Taking
into account risk, however, implies the need to consider partial
allocations, possibly in a continuous way. Actor-critic algorithms
may represent the right candidates to put together the advantages
from the value-based techniques and the flexibility of policy gradi-
ent approaches, in order to obtain effective risk-averse Automated
Trading Systems.
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