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ABSTRACT
Monte Carlo Tree Search (MCTS) has had very exciting results

in the field of two-player games. In this paper, we analyze the

behavior of these algorithms in the financial field, in trading where,

to the best of our knowledge, it has never been applied before and

in option hedging. In particular, using MCTS algorithms capable

of handling stochastic states and continuous actions, we setup a

practical framework testing it on real data both in the trading and

hedging case.

CCS CONCEPTS
• Computingmethodologies→ Online learning settings; Markov

decision processes; Reinforcement learning; Planning under un-
certainty.
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1 INTRODUCTION
Trading and hedging are two of the most important paradigms in

the financial world. Trading refers to buying and selling financial

assets to make a profit. Most of the existing trading algorithms are

expert systems, where experienced traders with computer scientists

write hard coded rules to exploit arbitrages or implement ideas from

the trader’s experience. Options market makers are also heavily

reliant on algorithms and their objective is to make a profit by

maximizing the number of trades and not by speculating. A market

maker will often price many of the options of an asset and in

order to properly manage all these options, she will be aided by an

automatic software to hedge the delta risk, so that she can focus

on other risks. In general, the software will hedge the delta risk of

each new trade and every few hours will hedge the delta risk of the

entire portfolio so to keep it delta neutral. This creates transaction

costs which can be quite relevant, depending on the liquidity of the

underlying instrument. There are two main methods of optimizing

costs: either by optimizing the execution (and blindly following
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the Black & Scholes [5] delta hedge), by optimizing the hedging

policy, or a combination of the two. In this work we will focus on

optimizing the hedging policy.

Both of the problems described before can be modeled as sequen-

tial decision-making problems, since in both cases the goal is to

maximize the cumulative sum of rewards over a temporal period.

These types of problems can be solved with two main approaches

in a machine learning context, Reinforcement Learning (RL) and

online planning. RL algorithms solve these problems by interacting

with the environment, or in the case of Batch RL by optimizing a

policy in a fixed dataset of demonstrations from the environment.

This means that, in the continuously changing world of financial

markets, RL algorithms would suffer from the non-stationarity of

the price processes, requiring continuous updates of the policy. On

the other hand, online planning algorithms, require a 1-step model

of the environment and use it in each step to construct a search-tree

to evaluate the different available actions. This makes themmore ro-

bust to non-stationary environments, since when the environment

changes, it suffices to update the generative models used during

the search, which in general is less expensive than updating the

policy maintained by RL algorithms. For these reasons, we focus on

OP as we believe it offers greater flexibility when dealing with the

continuously changing market environment, giving for example the

possibility to easily handle changes in the volatility, in the bid ask

spread and in the market impact. The MCTS algorithm proposed in

this paper is a variant of Upper Confidence Tree (UCT) [15]. This

algorithm has been designed for application in finite sequential

decision models: the state transition model is deterministic and the

action space is discrete and finite. On the other hand, both of our

scenarios of interest have a continuous state space with stochastic

state transitions i.e. given a state-action pair, there is a high uncer-

tainty about the possible next state. Hedging also has the added

complexity that the decision space is continuous.

Contribution. To the best of our knowledge, this is the first work
to apply MCTS to the trading problem and in a realistic option

hedging setting. We also innovate on the MCTS algorithms: we

use an open-loop variant of UCT [16] to deal with the stochastic

transition model, combined with a progressive widening procedure

in the case of continuous action spaces, as is the hedging scenario.

Furthermore, we propose a novel backup procedure for the MCTS

algorithms, which uses Q-Learning (QL) [23] Temporal Difference

(TD) [20] updates to address the high variance of the returns ob-

served in the nodes of the search-tree. For the trading scenario,

we propose a novel generative model to employ during planning,

which uses past observations of the asset of interest to generate

possible future realizations of the market to be used during plan-

ning in order to search for the optimal trading strategy. Finally, we

perform an evaluation of the proposed algorithm and generative
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models on real financial data. To our knowledge, it is the first paper

that tests a MCTS option hedging approach on real market data.

Paper Structure. The paper is structured as follows. In Section 2

we will comment on the most relevant existing approaches to trad-

ing and option hedging. In Section 3 we define MCTS and explain

the Progressive Widening (PW) and Open Loop UCT extensions

that allow MCTS to work in problems with stochastic state transi-

tions and continuous actions. The main part of the paper is then

divided into two Sections, in Section 5 we describe the trading

paradigm and our approach with the experimental results. Sec-

tion 6 is structured analogously to the previous one, but focusing

on the option hedging paradigm. Finally, we present the concluding

comments.

2 RELATEDWORKS
Although, to our knowledge, this is the first paper that considers the

use of MCTS in a trading framework, the use of machine learning

and especially RL has become popular in recent years [11]. [18] uses

recurrent RL and is considered as the first work in this direction.

Following this first paper, other approaches were tested e.g. genetic

algorithms [25] or adaptive RL [9]. The latter, as well as [10; 12]

concentrate on FX. Then there are approaches that consider Q-

learning [3; 14]. Finally, in [4] they use a novel risk-averse policy

search approach applied to FX and S&P data. Recently, the use of

Deep RL for trading has been “commoditized" thanks to an open

source library [17], but it does not contain MCTS-like algorithms.

The issue of option hedging has been analyzed by various au-

thors [6; 13; 22]. There are two main drawbacks of all these ap-

proaches compared to ours that make them “less compatible" with

real data: first, they generally consider a constant volatility, which

is unrealistic as market data is non-stationary; second, they require

a relevant training set that necessarily needs to be simulated as

thousands of realizations of an option with the same characteristics

are not available, this means that the data are necessarily simu-

lated thus losing the advantage of using model free approaches.

Finally, [21] uses MCTS in a simplified hedging scenario.

3 PRELIMINARIES
A discrete-time Markov Decision Process [MDP, 20] is defined

as a 5-tuple M = (S,A,P,R, 𝛾), where S is the state space,

A is the (possibly infinite) action space, P : S × A → P (S)
is the transition model, R : S × A → R is the reward func-

tion, 𝛾 ∈ [0, 1) is the discount factor. The behavior of an agent

is defined by means of a Markovian policy 𝜋 : S → P (A).
When the environment is in state 𝑠 ∈ S, the agent performs ac-

tion 𝑎 ∼ 𝜋 (·|𝑠) and the environment transitions to the next state

𝑠 ′ ∼ P(·|𝑠, 𝐴) providing the agent with the reward 𝑟 = R(𝑠, 𝐴).
The (policy-dependent) state value function is defined as 𝑉 𝜋 (𝑠) =
E𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡

���𝑠0 = 𝑠, 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 )] . We also define the state-action

value function as𝑄𝜋 (𝑠, 𝑎) = E𝜋
[∑∞

𝑡=0 𝛾
𝑡𝑟𝑡

���𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 )] ,
where the first action is fixed. The goal of the agent is to find

the policy 𝜋∗ maximizing the value function in all states: 𝜋∗ (𝑠) =
arg max𝜋 𝑉

𝜋 (𝑠), ∀𝑠 ∈ S.

3.1 Monte Carlo Tree Search
The MCTS family of algorithms combines tree-search algorithms

with Monte Carlo sampling to iteratively build a search tree of

possible future scenarios, which is in turn used to build an estima-

tor of the optimal value of each action in the current state of the

environment. These algorithms are characterized by 4 phases:

(1) Selection: Starting from the root of the planning tree, a tree
policy is iteratively applied until an unexpanded (a node with
unvisited children) node is reached.

(2) Expansion:One or more the successors of the reached node

are added to the tree. A common best practice is to add only

the first newly visited node.

(3) Simulation: A Monte Carlo simulation (rollout) is started
from the expanded node to provide an initial estimate of the

nodes’ value.

(4) Backpropagation: The values of the states visited during

the tree traversal and the simulation are backpropagated up

the tree until the root, updating the relevant statistics.

In this work, we focus on Upper Confidence Tree (UCT) [15]. UCT

applies as a tree policy the well-known Multi Armed Bandit (MAB)

algorithm, Upper Confidence Bounds (UCB1) [1]. At iteration 𝑛,

UCB1 chooses the action that maximizes a high probability upper

bound of the value of the actions according to:

𝑎𝑛 = arg max

𝑖=1..𝐾

𝑋 𝑖,𝑇𝑖 (𝑛−1) +𝐶

√
2 log𝑛

𝑇𝑖 (𝑛 − 1)
, (1)

where 𝐾 is the number of actions, 𝐶 is a constant that regulates

the exploration-exploitation tradeoff, 𝑇𝑖 (𝑛 − 1) is the number of

times action 𝑖 has been played up to time 𝑛 − 1 and 𝑋 𝑖,𝑇𝑖 (𝑛−1) is the
average payoff observed from arm 𝑖 .

Progressive Widening. When the action-space is continuous, we

cannot apply UCB in the nodes of the search tree since the number

of actions is infinite, and as a consequence also the true search-tree.

One of the main techniques to deal with infinite action spaces is

Progressive Widening (PW) [7]. With PW, the actions are explored

progressively as the node visitation counts increase, the idea being

that the nodes visited the most are more promising. Specifically,

when a node is visited for the 𝑛-th time, if the number of children

of a node |C𝑛 (N)| is larger than 𝑛𝛼 , where 0 < 𝛼 < 1, a new

action is explored by sampling from the action space, otherwise,

one of the previous selected actions is explored. In the second case,

it is common to chose the action previously visited according to

UCB1. Importantly, PW only specifies when to add new nodes to

the search tree, but not which new actions to explore. Usually, in

literature, new actions are sampled uniformly in the action space,

but the empirical performance of the algorithms strongly depends

on the action sampling distribution employed.

Open Loop Planning. The open-loop planning approach is used

in problems with continuous state spaces and stochastic transi-

tion models since the true search tree is infinite. In this setting,

the problem considered is to find the optimal sequence of actions

to be employed at the root state of the tree, without consider-

ing the states visited during the search, transforming the infi-

nite search tree of the original problem into a finite tree with

branch factor equal to the number of actions. Formally, given
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a starting state 𝑠 ∈ S and a sequence of actions of length 𝑚:

𝜏 = (𝑎1, . . . , 𝑎𝑚), 𝑎𝑖 ∈ A, 𝑖 = 1, . . . ,𝑚, we define the open-loop

value of the sequence 𝜏 starting from state 𝑠 as the discounted

sum of the rewards collected executing the complete sequence

𝜏 starting from state 𝑠: 𝑉𝑂𝐿 (𝑠, 𝜏) = E
[∑𝑚

𝑡=1 𝛾
𝑡𝑟𝑡

���𝑠0 = 𝑠, 𝑎𝑡 ∈ 𝜏 ] .
The sequence length𝑚 can be infinite when 𝛾 < 1. The optimal

open-loop value function is the maximizer over the possible se-

quences 𝜏 ∈ A𝑚 : 𝑉 ∗
𝑂𝐿
(𝑠) = max𝜏 ∈A𝑚 𝑉𝑂𝐿 (𝑠, 𝜏). Similarly, we

define the optimal open-loop state-action value function for each

state-action pair (𝑠, 𝑎) ∈ S × A as the maximizer of the open-loop

value over all the possible sequences of actions starting with 𝑎,

𝜏𝑎 ∈
{
(𝑎, 𝜏)

���𝜏 = 𝑎1, . . . 𝑎𝑚−1}: 𝑄∗𝑂𝐿 (𝑠, 𝑎) = max𝜏𝑎 𝑉𝑂𝐿 (𝑠, 𝜏𝑎).

4 OUR APPROACH: OPEN LOOP
Q-LEARNING UCT

In this section, we present the planning algorithm used in this work.

To tackle the continuous state space with stochastic transitions of

both problems, we resort to an open-loop approach that looks for

the optimal sequence of actions to apply to the environment. Even

though the planning phase is done in an open-loop fashion, only

the first action identified by the planning procedure is applied, since

in our online framework, planning is interleaved with acting in the

environment. The alternative to an open-loop setting is the applica-

tion of PW to the state space, but this comes with higher memory

costs as well as a higher planning budget needed to represent the

(approximate) full search tree.

Formally, we consider a planning phase with a limited search-

depth D. The open-loop search tree of depth D is denoted by T𝐷 .
We denote by N𝑑,𝑖 the 𝑖-th node at depth 𝑑 ≥ 0 for 𝑖 ∈ N and

𝑑 = 1, . . . , 𝐷 . In the open-loop case, each node in the tree is uniquely

identified by the sequence of actions representing the path from the

root to the node. N0,0 contains a single state, 𝑠0 ∈ S, from which

we want to perform planning. Nodes N𝑑,𝑖 , with 𝑑 > 0, at deeper

levels of the tree, represent the distribution of states given the

sequence of actions from the root of the tree to N𝑑,𝑖 . Specifically,
given a node N𝑑,𝑖 and the sequence of actions that identifies it

𝜏𝑑,𝑖 = (𝑎1,𝑖 , . . . , 𝑎𝑑,𝑖 ), the possible states observed in the node N𝑑,𝑖
represent the state distributions induced by executing 𝜏𝑑,𝑖 starting

from state 𝑠0.

We start by defining the open-loop value of a node N𝑑,𝑖 as:

V
(
N𝑑,𝑖

)
= E
𝑠∼P( · |𝑠0,𝜏𝑑,𝑖 )

[
𝑉 ∗𝑂𝐿 (𝑠)

]
, (2)

and the value of an action 𝑎 ∈ A in node N𝑑,𝑖 as:

Q
(
N𝑑,𝑖 , 𝑎

)
, = E

𝑠∼P( · |𝑠0,𝜏𝑑,𝑖 )

[
𝑄∗𝑂𝐿 (𝑠, 𝑎)

]
= E
𝑠∼P( · |𝑠0,𝜏𝑑,𝑖 )

[𝑟 (𝑠, 𝑎)] + 𝛾V
(
N𝑑+1, 𝑗

)
, (3)

where 𝜏𝑑+1, 𝑗 =
(
𝜏𝑑,𝑖 |𝑎

)
is the sequence of action derived from con-

catenating 𝜏𝑑,𝑖 with 𝑎 and N𝑑+1, 𝑗 is the child of node N𝑑,𝑖 cor-
responding to action 𝑎. The goal of our proposed planner is to

estimate the optimal open-loop action values at the root node by

applying a UCT-like selection policy that selects, in each node, the

action that maximizes the upper bound of the Q values according

Algorithm 1 Q-Learning Open Loop Planning

procedure OLSearch(𝑠0)
Create root node N0,0 from state 𝑠0

while within computational budget do
N𝑑,𝑖 , 𝑠 ← TreePolicy(N0,0)
V

(
N𝑑,𝑖

)
← Rollout(N𝑑,𝑖 , 𝑠)

Backup(N𝑑,𝑖 )
end while
return BestChild(N0,0)

end procedure
procedure TreePolicy(N)

while N not terminal do
if N not fully expanded then

return Expand(N)
else
N ← BestChild(N,𝐶𝑝 )

end if
end while
return N

end procedure
procedure Backup(N,𝑉 )

𝐶′ (N) denotes explored children nodes of N
N′ ← parent of N
N.𝑛 ← N.𝑛 + 1
while N′ is not null do

if N is leaf then
Δ← 𝑉

else
Δ← max𝑎′∈𝐶′ (N) 𝑄 (N, 𝑎′)

end if
𝑄 (N′, 𝑎) ← 𝑄 (N′, 𝑎) + 𝛼 (N′.𝑟 + 𝛾Δ −𝑄 (N′, 𝑎))
N′.𝑛 ← N′.𝑛 + 1
N ← N′
N′ ← parent of N

end while
end procedure

to Equation (1). In the case of continuous actions, we employ a PW

strategy as described in Section 3.1.

Our second change of the base UCT algorithm is the backup

operator employed in the backpropagation phase. During the tree

expansion, exploitation and exploration is interleaved thanks to

the selection rule of UCB, meaning that the values observed in

each node come from very different policies. Also, in the simulation

phase, a suboptimal rollout policy is employed to give an initial

evaluation of each node. This rollout policy is clearly suboptimal

(if we had an optimal policy for the rollout we would not need to

perform planning) adding further noisy samples being backed-up.

Both of these factors make the backup values observed extremely

noisy, which is a further problem in our financial settings. For these

reasons, instead of the plain Monte Carlo updates, that average

the return values observed in each node in the tree, we employ

a Temporal Difference update, based on the Q-Learning update

rule [23], as follows:

Q𝑡
(
N𝑑,𝑖 , 𝑎

)
= (1 − 𝛼𝑡 )Q𝑡

(
N𝑑,𝑖 , 𝑎

)
+ 𝛼𝑡

(
𝑟𝑡 + 𝛾 max

𝑎′
Q𝑡

(
N𝑑+1, 𝑗 , 𝑎′

))
, (4)
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where 𝑟𝑡 is the reward observed in the current search pass at node

N𝑑,𝑖 and 𝛼𝑡 is the learning rate employed, which constitutes an

added hyperparameter of our planner.

We present the pseudocode of our planner in Algorithm 1. This

planner is devised to be employed in each decision interval with a

given planning budget, specified in environment transition samples

from the model. At each search iteration, we perform the selection

phase, plain UCB, or UCB interleaved with PW in the hedging case,

until a leaf of the tree is reached. We then perform a rollout from

the leaf. The specific rollout policies employed in both scenarios are

described in the following sections. The rollout gives us an initial

estimate of the node value. Next, we recursively employ QL updates

up the tree, updating the node and action values and counts. This

means that the initial noisy back-up value given by the rollout,

even though it is stored in the leaf node, might not make its way

up to the root, since at each node we employ the max operator

to define the target value, as shown in the Backup procedure. If

all the children of a node have not been explored yet, for the Q-

learning update of Equation (4), we apply the max operator only to

the visited nodes, disregarding the unexplored actions. Finally, the

BestChild procedure has not been described since it depends on

the action space of the specific problem. In the trading environment,

the selection is based on UCB, whereas in the hedging scenario,

since the action space is continuous, we apply PW together with

UCB.

Optimality Remark. It is worth noting that, while in general the

open-loop setting comes with a loss of performance compared to

the closed-loop setting, this is not an issue in the specific tasks of

trading and hedging. This is due to the fact, that the market is not

influenced by our actions. In the next sections, we will describe

the state-space of both these tasks. The state space is composed

of features relative to the market (the price history) and features

related to the agent (the agent’s current position). While the market

features follow stochastic transitions they are not influenced by

the agent’s actions. The only features influenced by the agent are

its own positions regarding the underlying assets which follow

deterministic transitions. Trading and hedging, in our setting, form

a special case of Factored MDPs [8], where the state transitions

consist in two independent clusters of features. This means that

the agent can effectively react to the differences in the features that

it can control, also in the open-loop setting.

5 TRADING
In this section, we concentrate on the trading framework. Specifi-

cally, we analyse trading in the Foreign Exchange (FX) market, the

largest type of financial market in the worldin terms of daily vol-

umes. For our experiments, we look at the most liquid FX currency

pair which is the EURUSD.

5.1 Problem Formulation
Wemodel the trading scenario as a continuous state, discrete action

MDP, as follows:

State. The state contains a window of the last𝑀 observed prices.

In our experiments, the decisions are taken every minute, so we use

a window of 60 prices i.e. an hour of observations. This window is

used to incorporate in the state information about the trends of the

market, as including only the current price would make the state

non-Markovian. Since we consider trading in a finite horizon of

length H, we include in the state also the current timestep 𝑡 ∈ [0, 𝐻 ]
and the portfolio position 𝑥𝑡−1 ∈ {−1, 0, 1} of the previous timestep.

Action. We consider a discrete action space where the action at

time 𝑡 , 𝑎𝑡 is the portfolio position the agent will hold, so -1 indicates

keeping a short EURUSD position: selling 1 EUR and buying the

equivalent amount of USD, 0 indicates not holding any exposure,

+1 indicates buying 1EUR and selling the equivalent amount of USD.

Each action has the same size of unitary amount.

Reward. Given the current portfolio position 𝑥𝑡 , the action taken

𝑎𝑡 , and the prices, the reward is defined as:

𝑟𝑡 = 𝑎𝑡 · (𝑝𝑡 − 𝑝𝑡−1)︸             ︷︷             ︸
market variation

− 𝑏𝑖𝑑 − 𝑎𝑠𝑘
2

· |𝑎𝑡 − 𝑥𝑡 |︸                    ︷︷                    ︸
transac. costs

, (5)

where bid in this case represents the best bid or the highest price an
investor is ready to pay, and similarly for the ask.

𝑏𝑖𝑑−𝑎𝑠𝑘
2
· |𝑎𝑡 −𝑥𝑡 |

represent the transaction costs.

5.2 Nearest Neighbor Generative Model
A key element of applying MCTS, apart from the specific planning

algorithm is also the generative model used to generate the simula-

tions during the planning phase. A first alternative is to use classical

models such as GBM or Vasicek SDEs, or econometric models such

as ARIMA, with parameters calibrated to fit the training data. In this

section, we propose a novel technique to generate MC simulations

during the planning phase, based on a Nearest Neighbors [2] frame-

work, to retrieve, from the historical data available, price sequences

that are “similar” to the current price window in the state.

Formally, we consider time series of historical prices of the as-

set, (𝑝1, 𝑝2, . . . , 𝑝𝑇 ) where 𝑇 is the length of the time series. At

time 𝑡 , we observe the window of the last 𝑀 prices of the asset,

(𝑝𝑡−𝑀 , . . . , 𝑝𝑡−1). Since the length of the dataset𝑇 might cover mul-

tiple years, and the price of the asset might have changed substan-

tially in these years we consider, instead of the series of prices, the

series of price variations, 𝐷 = (𝛿1, 𝛿2, . . . , 𝛿𝑇 ) where 𝛿 𝑗 =
𝑝 𝑗−𝑝 𝑗−1
𝑝 𝑗−1

,

where we consider 𝑝0 = 𝑝1. Our goal is to find the “closest neigh-

bors” of the window 𝑤𝑡 = (𝛿𝑡−𝑀 , 𝛿𝑡−𝑀+1, . . . , 𝛿𝑡−1) in the partial

dataset 𝐷𝑡 = (𝛿1, 𝛿2, . . . , 𝛿𝑡−1), that is the historical data before

time 𝑡 . By finding the nearest neighbors of 𝑤𝑡 , we can use the

continuation of the windows as simulations during the rollout.

Specifically, given a rollout length 𝑁 , we aim to retrieve the 𝐾

nearest neighbors of𝑤𝑡 (relative to a distance measure 𝑑), {𝑤𝑡𝑖 }𝐾1 ,
where 𝑀 < 𝑡𝑖 < 𝑡 − 𝑁 is the time index of the 𝑖-th neighbor.

We split the time series 𝐷𝑡 in overlapping windows of length 𝑀 ,

generating the dataset𝑋 , where each row of the dataset is a window

of length𝑀 (same as the state window), where 𝑋0 = (𝛿1, . . . , 𝛿𝑀 ),
𝑋1 = (𝛿2, . . . , 𝛿𝑀+1) and the last row 𝑋𝑡−𝑁 = (𝛿𝑡−𝑁−𝑀 , . . . , 𝛿𝑡−𝑁 ).
Note that, the last price in the dataset 𝑋 , is the price at time 𝑡 − 𝑁 ,

meaning that the last price of the corresponding rollout simulation

is the last timestep. Before starting the planning phase, we search

in the dataset 𝑋 , for the 𝐾 nearest neighbors of the current window

𝑤𝑡 . This 𝐾 neighbors give 𝐾 possible future continuations of the
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Figure 1: Visual representation of the NN generative model.

price variations, which are used during planning. Figure 1 shows a

visual representation of the NN model.

5.3 Experiments
In this section, we present an experimental campaign evaluating the

MCTS approach in the trading problem. We use as planner, QL-OL

UCT described in Section 4. As a generative model, we use the Near-

est Neighbor approach described in the previous section. Obviously

𝐾 becomes an hyperparameter of our approach. At the beginning

of each planning iteration, we sample one of these neighbors to use

as a trajectory for the next rollout.

We concentrated our experiments on the EURUSD FX pair. We

used a dataset of historical 1 minute prices from 2017 to 2019. In

each episode, we sample a random date from the year 2019 and

begin a trading episode for the next 𝐻 minutes, where the horizon

𝐻 is set to 200 in our episodes. We repeat this 50 times and present

results as average return together with the 95% Confidence Intervals

(CI).

For each episode, we use as dataset for the Nearest Neighbors

model, the series of prices from 1st of January 2017 to the current

date. We considered as neighbors only the price windows coming

from hours in a window of 3 hours centered at the current hour

of the day, meaning that if we are currently trading in 10:00, we

consider only windows from the time 9:00 to 11:59. This yielded

better results, compared to considering all the possible windows,

since there appears to be some correlation in the return windows

depending on the hour of the day. Furthermore, this decreases the

computational costs of retrieving the neighbors.

In each timestep, we perform a tree search, using QL-OL UCT

with planning budget 𝐵 and by sampling 𝐾 neighbors. Both 𝐵 and

𝐾 represent hyper-parameters. During planning, we decrease the

decision frequency, meaning that every action chosen during the

simulation phase (tree search) is repeated 𝐶 times in the environ-

ment, before allowing to chose another action. This is done to

effectively increase the planning horizon, without increasing the

planning cost, as frequent changes of the position are often non-

optimal, especially under the presence of transaction costs. In all
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Figure 2: Expected annual return with no transaction costs,
as a function of the search budget and the numbers of neigh-
bors. Average over 50 runs, 95% CI.

our experiments we use 𝐶 = 5. Moreover, the maximum tree-depth

has been set to 5, to allow for fast tree-search construction with

a low budget because of the quasi-real-time requirements of the

application. This essentially means that the tree-search algorithm

will optimize the return over the next 25 minutes given a tree depth

of 5, where each level represents 5 minutes of transactions.

Results. In Figure 2 we evaluate our approach in a setting without
transaction costs. This is done to evaluate whether the Nearest

Neighbours model is able to accurately predict the future trends in

the market. On the y-axis we present the expected annual return

(EAR). On the left we present the EAR as a function of the planning

budget 𝐵, measured as transitions sampled from the forward model.

In this experiment, we fix the number of neighbors 𝐾 = 100. While

for very low budgets, of 100 and 200 transitions, corresponding to

20 and 40 future observed trajectories, the agent comes at a loss, we

see that starting from really low budgets of 400 are able to achieve

a profit. As we increase the budget, the returns improve (as we

would expect). Finally, on the right we show the dependence of the

returns on the number of neighbors 𝐾 , while fixing the planning

budget 𝐵 = 1200 samples. Similarly to the previous experiments, a

low number of neighbors yields a really low performance, as the

trajectories seen during the simulation do not accurately reflect

the true future trajectories, so the planning agent “overfits” these

simulations. As the number of neighbors surpasses 100, we become

profitable, and the return improves slightly with the increase in

neighbors. Next, we evaluate our approach in the more realistic

scenario of trading with transaction costs. In this scenario, we set

the costs of Equation (5),
𝑏𝑖𝑑−𝑎𝑠𝑘

2
= 10

−5
. Figure 3 shows the results

of this experiment, where we vary the search budget and fix the

number of neighbors to 100. Differently from the previous case, the

addition of transaction costs has made the planning agent more

careful. While, similarly to the previous case, for low budget values,

the agent performs at a loss, when increasing the budget, even

further than the previous case, the agents converges in a policy of

not trading and insuring 0 profit (and loss). This probably happens

because the search horizon is shorter than the true horizon of

the interaction, making it inconvenient to trade with transaction

costs because there is not enough time to observe the benefits

of paying these costs. On the other hand, increasing the horizon

search comes with increased computational demand for taking each
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Figure 3: Expected annual return with transaction costs as a
function of the search budget. Average over 50 runs, 95% CI.

decision. Nonetheless, even for low budgets of 3000 samples during

the search (which allow for near real-time response), the agent does

not suffer losses. In future works, we aim to tackle the problem

of mismatching horizons during search and interaction, with the

aim of increasing the search horizon without suffering costs in the

response time. Potentially by using more intelligent rollout policies,

that will focus the tree construction in the relevant parts.

6 OPTION HEDGING
In this section, we focus on the application of MCTS to the option

hedging problem faced by market makers. We consider the case

of a single vanilla equity call option. Vanilla options are contracts

that offer the buyer the right to buy or sell a certain amount (the

option’s notional) of the underlying asset at a predefined price (the

strike) at a certain future time (the maturity). The investor pays

at inception the option premium in order to buy the option. This

offers the investor the opportunity to gain money if the price of

the underlying asset surpasses the strike. On the other hand, this

comes with the risk of losing the payed premium if the price is

lower than the strike at expiry. We take the point of view of an

options market maker, who, in order to manage the risk generated

by having a net positive or negative inventory of options needs

to hedge the delta risk. Option pricing and hedging builds on the

Black & Scholes (B&S) model [5] which is based on a strong set of

assumptions that tend to be unrealistic [24]: hedging is assumed to

be cost-less and continuous.

6.1 Problem Formulation
B&S is the main option pricing model used in practice, and so

the benchmark considered in this work. In this framework, the

underlying behaves as Geometric Brownian Motion (GBM), thus

let 𝑆𝑡 be the underlying at time 𝑡 , then it can be described as d𝑆𝑡 =

`𝑆𝑡d𝑡 + 𝜎𝑆𝑡d𝑊𝑡 where𝑊𝑡 is Brownian motion, ` the drift (which

we assume to be 0 throughout the paper without loss of generality)

and 𝜎 the volatility. Let 𝐶𝑡 be call option price at time 𝑡 , 𝑇 the time

of maturity, 𝑇 − 𝑡 the Time To Maturity (TTM), 𝐾 the strike price,

𝜎 and ` coincide with those of the GBM. The B&S call price 𝐶𝑡 is:

𝐶𝑡 (𝑆𝑡 ) = Φ(𝑑𝑡 )𝑆𝑡 − Φ(𝑒𝑡 )𝐾𝑒` (𝑇−𝑡 ) ,

𝑑𝑡 =
1

𝜎
√
𝑇 − 𝑡

[
ln

(
𝑆𝑡

𝐾

)
+
(
` + 𝜎

2

2

)
(𝑇 − 𝑡)

]
,

𝑒𝑡 = 𝑑𝑡 − 𝜎
√
𝑇 − 𝑡,

where Φ is the cumulative distribution function of the standard

normal distribution. We introduce
𝜕𝐶𝑡

𝜕𝑆
, which is known as the

option delta and for our position (a long call of unitary notional) is

bounded between 0 and 1. In particular when𝑇 −𝑡 is relatively small

and
𝑆𝑡
𝐾
≪ 1,

𝜕𝐶𝑡

𝜕𝑆
→ 0 and 𝐶𝑡 → 0; instead if

𝑆𝑡
𝐾
≫ 1,

𝜕𝐶𝑡

𝜕𝑆
→ 1

and 𝐶𝑡 → 𝑆𝑡 . A trader who has a long position in a call option will

endure a profit swing of 𝐶𝑡+𝑘 (𝑆𝑡+𝑘 ) −𝐶𝑡 (𝑆𝑡 ) for a time-lag of 𝑘 . A

delta hedge is a strategy to limit this profit movement by buying or

selling a certain quantity of the underlying.

The Profit and Loss (P&L) in one timestep of hedging the option

variation is:

𝜌𝑡+𝑘 = 𝐶𝑡+𝑘 (𝑆𝑡+𝑘 ) −𝐶𝑡 (𝑆𝑡 )︸                    ︷︷                    ︸
Option variation

−ℎ𝑡 × (𝑆𝑡+𝑘 − 𝑆𝑡 )︸              ︷︷              ︸
hedge variation

− 𝑚 × 𝑐 (𝑛)︸    ︷︷    ︸
transac. costs

. (6)

Where 𝑛 is the difference between two consecutive portfolios. If

ℎ𝑡 =
𝜕𝐶𝑡

𝜕𝑆𝑡
, 𝑘 → 0 and 𝑐 (𝑛) = 0 the B&S model assures a zero

profit. Similarly to the trading case, we define proportional transac-

tion costs which depend on the bid-ask spread of the underlying

instrument:

𝑐 (𝑛) = |𝑛 | × 𝑏𝑖𝑑 − 𝑎𝑠𝑘
2

. (7)

Embedding in an MDP. In order to use online planning, it is

necessary to define the characteristics of the MDP:

• the action 𝑎𝑡 is the current hedge portfolio, replaces ℎ𝑡 ,

• the state 𝑠𝑡 = (𝑆𝑡 ,𝐶𝑡 , 𝜕𝐶𝑡

𝜕𝑆𝑡
, 𝑎𝑡−1),

• the reward R(𝑠𝑡 , 𝑎𝑡 ) = 𝑓 (𝜌𝑡 ), with 𝜌𝑡 as in Equation (6).

6.2 Our Approach
In this section, we describe the approach we took to tackle the op-

tion hedging problem with QL-OL UCT. We choose an underlying

asset and an option on that underlying. We observe from the market

the current underlying price 𝑝𝑡 and option price 𝑜𝑡 , we then calcu-

late the B&S implied volatility 𝜎𝑡 and plan with QL-OL UCT using

as generative model a GBM with starting price 𝑝𝑡 and volatility 𝜎𝑡 .

Once the search is over, we select the action 𝑎𝑡 = max𝑎 Q
(
N0,0, 𝑎

)
.

Then we start over by observing the new market information and

continue until option expiry.

As it would be quite expensive from a planning point of view

to search the entire action space, we took the following steps to

facilitate planning using available information:

• the rollout policy is the delta hedge;

• the search looks only a few steps ahead, as using the account-

ing formulation makes it unnecessary to see what happens

at expiry thus reducing the necessary budget;

• 𝑎𝑡 = 𝜕𝐶𝑡

𝜕𝑆𝑡
is always explored;

• the action search space is reduced to being between the

current portfolio and the delta + 𝜖 .
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Figure 4: P&l of the MCTS agent w.r.t. the delta hedge (left)
and trading costs generated byMCTS agent w.r.t delta hedge
(right). Average of 2000 simulations, 95% CI. Results in EUR,
annualized and for a single option.

0 25 50 75 100 125 150 175 200
time-step

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
tio

n

m=0.05
m=1
m=5
delta

Figure 5: Action on SX7E, single option with strike 90 and
expiry 17/06/2021, starting 25 working days before expiry.

With such a formulation, the MCTS algorithm searches around the

delta hedge action in order to understand if there is an action which

is superior to the delta hedge action given our reward formulation.

6.3 Experiments
In this section, we perform an empirical evaluation QL-OL UCT on

the option hedging environment. Initially, we observe the perfor-

mance on simulated data and in a second experiment, we evaluate

the performance on real data always comparing to the delta hedge.

One of the used metrics use is the cumulated p&l over the entire

life of the option we are considering, where the step p&l is defined

as in Equation (6). We also refer to the cumulated p&l as the returns.

The results are annualized for ease of comparison and expressed in

terms of a single option, but are linear so can be multiplied by the

number of options.

Simulated Data. In the simulated results, we consider hedging a

long position in a vanilla call option, considering any other type

of vanilla option and positioning would have been equivalent. The

characteristics of the GBM are: 𝜎 = 0.45, ` = 0, starting price 100

EUR, the same as the strike (i.e. the option is ATM). The TTM is

initially 20 days with 7 time-steps per day, thus the resulting option

price at inception is ∼ 4.7 EUR and the delta is ∼ 0.5. There are 7

rebalancing steps per day, thus one every hour, so a total of 140

steps. The TTM is calculated as year fraction, considering the actual

amount of time between every two steps which is different at the

end of each working day and during weekends. The
𝑏𝑖𝑑−𝑎𝑠𝑘

2
of the

transaction costs is considered as 0.05 and we use a zero financing

cost. In the following experiments, the results are calculated on

2000 independently run scenarios, a budget of 3000, and a search

depth of 6. Figure 4 shows the results obtained on the simulated

data, the x-axis is the difference between the variance of the returns

generated by the MCTS minus that generated by the delta hedge

in both graphs. The graph on the left has as y-axis the difference

of the returns between the MCTS agent and the delta hedge while

the graph on the right represents the difference in trading costs

generated by the MCTS agent and the delta hedge. Each point

represents the average of the 2000 independent runs, the blue bars

are 95% CI. The number annotated next to the each point represents

the coefficient𝑚 from Equation (6) used during the search, at each

real step in the environment𝑚 = 1.

We can see that as we increase the coefficient 𝑚, we are in-

creasing the returns, decreasing the costs and increasing the risk

generated by the MCTS agent. Another characteristic, which can

be noticed by comparing the left and right graph, is that most of

the over-performance of the MCTS agent w.r.t the delta hedge is

given by the reduction in costs.

Real Data. We considered two datasets, one with the SX7E future

and 4 options on this future with strike 89, 90, 91, 92 (and starting

price 4.9, 4.5, 4.1 and 3.7 EUR respectively) and expiry 17/06/2021

with 8 timesteps per day one each hour from 10am to 5pm CET,

starting from 11/03/2021 for a total of 551 timesteps. The second

the time series of the ICLN ETF, with an option with strike 23 and

unitary starting price 1.6 USD. The expiry was 17/06/2021, there

are 8 timesteps per day from 2.30pm to 9.30pm CET starting on

15/04/2021 for a total of 360 timesteps. The
𝑏𝑖𝑑−𝑎𝑠𝑘

2
= 0.05 for the

SX7E future and 0.01 for the ICLN ETF. Given the stochasticity of

a MCTS agent, the optimal approach is to run the search multiple

times and take the average. The figures and tables compare the

behavior of the delta hedge with that of a MCTS agent averaged

over 30 searches with 95% CI. In Figure 5 we can see the policy learnt

by MCTS agents when changing the parameter𝑚. Specifically, we

can see that as𝑚 increases the policy becomes smoother, as we are

reducing the hedging costs. The delta hedging strategy is the least

smooth.

The cumulated p&l results are summarized in Table 1, which

shows for each different option and each parameter𝑚, the difference

in 𝑃&𝐿 (Δ𝑃&𝐿) and in trading costs (Δ costs) of the MCTS agent

with respect to the delta hedge averaged over 30 runs, with the

corresponding 95% CI. We ideally would like to achieve Δ𝑃&𝐿 >

0 and as large as possible, with a negative Δcosts. We can see

that while not all the agents are capable of statistically significant

higher p&l than the delta hedge, all of them achieve the objective

of lowering the trading costs of the underlying and as𝑚 increases,

transaction costs become lower. In our opinion, the main reason

for which the results on real data are not as encouraging as those

on simulated data is that option price jumps may be more severe

than what the generative model predicts. Another reason is that
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𝑚 = 0.05 𝑚 = 0.5 𝑚 = 1 𝑚 = 5

Δp&l ±CI Δcosts ±CI Δp&l ±CI Δcosts ±CI Δp&l ±CI Δcosts ±CI Δp&l ±CI Δcosts ±CI
ICLN23 -0.127 0.046 -0.090 0.003 -0.084 0.086 -0.149 0.003 -0.100 0.063 -0.155 0.002 -0.078 0.053 -0.158 0.002

SX7E89 -0.003 0.032 -0.066 0.005 0.045 0.043 -0.168 0.003 -0.041 0.030 -0.203 0.004 -0.034 0.041 -0.254 0.002

SX7E90 0.007 0.055 -0.060 0.003 0.009 0.042 -0.154 0.003 0.011 0.047 -0.185 0.003 -0.006 0.039 -0.234 0.003

SX7E91 -0.024 0.034 -0.074 0.004 0.006 0.045 -0.177 0.004 -0.042 0.040 -0.213 0.004 -0.107 0.044 -0.264 0.003

SX7E92 0.037 0.046 -0.072 0.005 0.040 0.058 -0.178 0.004 -0.005 0.054 -0.212 0.003 -0.047 0.044 -0.268 0.003

Table 1: Behavior of average MCTS agent with respect to the delta in terms of terminal p&l and costs, 30 runs, 95% CI. Figures
are in EUR (USD for ICLN), annualized and for a single option.

these are results on a single scenario, and more data is necessary

to achieve statistically significant results.

7 CONCLUSIONS
In this work we analyzed a MCTS approach to trading and option

hedging. Specifically we created a MCTS algorithm, coined QL-OL

UCT, which is capable of working with real market data i.e with
continuous stochastic states, and in the case of option hedging

also continuous actions. We applied this algorithm to the trading

setting, where we used a novel generative model using historical

data and a clustering approach. We saw how this approach behaved

on a real-data where we consider the EURUSD FX contract. While

we manage to consistently achieve profit, even for small planning

budgets without considering transactions costs, adding these costs

causes the agents to decide not to trade. In future works, we plan

to consider alternate generative models and tree-search procedures

to allow to achieve a profit also with the addition of transaction

costs. We applied the same algorithm in the option hedging con-

text, testing it also on real data. The results on simulated data are

encouraging as the MCTS agent achieves a superior performance

than the delta hedge in terms of cumulated profit, but further work

needs to be done in order to improve the result on real data where

we are not working in an average scenario but there is only one

realization which needs to be successfully hedged.

We intend to explore further avenues, specifically working on

improving the generative models, for both the trading and option

hedging environments. Finally, we intend to extend alphazero [19],

which has achieved astonishing experimental results, in order to

make it compatible with stochastic states and continuous actions.
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