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ABSTRACT
This work considers the problem of a trader who must manage
the Credit Valuation Adjustment (CVA) of a derivative, defined as
the risk-neutral expectation of losses incurred if the counterparty
of the derivative defaults. CVA can be regarded as a hybrid prod-
uct, one of the most complex actively managed by a trading desk.
Standard delta hedging based on sensitivities is not completely
satisfactory for this product, because it ignores trading costs and
jump-to-default risk while introducing unavoidable simplifications
in the pricing model. In this paper we use risk-averse Reinforce-
ment Learning to learn a superior hedging strategy compared to
the standard delta hedging approach. Specifically, we generalize
risk-averse Reinforcement Learning to stochastic horizons, to be
compatible with counterparty defaults, and we introduce a realistic
framework for the mechanics of the hedger’s portfolio in which
the data generating process of the underlying risk drivers can be
inconsistent with the risk-neutral laws used to price the CVA and
the hedging instruments. The potential of the proposed approach
is investigated empirically by numerical examples on hedging the
CVA of a forex forward.

CCS CONCEPTS
• Theory of computation → Sequential decision making; •
Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Given a financial derivative product Π in place between two parties
𝐼 and 𝐶 , the Credit Valuation Adjustment (CVA) experienced by 𝐼

is a measure of the average loss incurred by 𝐼 due to the fact that
𝐶 may default when the value of Π is in favour of 𝐼 . A financial
institution is due to adjust Π’s book value by the CVA, which enters
𝐼 ’s balance sheet, and, since its value depends on the market condi-
tions, contributes to its volatility and has to be actively managed.
In this sense, the CVA can be seen as another derivative, built on
Π, but it is typically more complex, since its value depends both on
the value of Π (which, as a derivative, depends on one or more risk
drivers), and on the default probability of 𝐶 .

CVA risks are usually managed by buying and selling both the
underlying risk drivers and Credit Default Swaps (CDS) on the
counterparty. The CVA risk can be measured and monitored using
its first (and eventually higher) order derivatives with respect to
the risk drivers, but this standard practitioner “delta hedge” may
be highly suboptimal for a number of misalignments between the
risk-neutral CVA pricing setup and reality, including trading costs
and model misspecification. Moreover, sensitivity-based hedging
addresses by definition only continuous movements of the risk
factors, while CVA jumps at 𝐶’s default time.

In this work we propose to use risk-averse Reinforcement Learn-
ing (RL) to learn the CVA hedging strategy and to overcome the
mentioned issues.

The theoretical benefits of our approach are manifold:

(1) We describe the hedger’s portfolio in a general and realis-
tic way including market frictions, time-discretization and
practical details of the market instruments. This is because
RL algorithms are data driven and the realism can simply be
modelled in the environment.

(2) We decouple the generating process of the underlying risk
drivers from the risk-neutral laws used to price the CVA and
the hedging instruments, which may even change along the
life of the deal (e.g., because of recalibration). This enhances
our description of the actual profit-and-loss (PnL), which
in practice is calculated according to rules which are not
under the control of the trader. Such flexibility enables for
instance a numerical investigation of the quality of the RL-
optimized hedging strategy in presence of hedging costs and
correlations even when the book value of CVA ignores them.

(3) We use a realistic objective function. Indeed, the adopted
Trust Region Volatility Optimization (TRVO) [4] algorithm
is tailored to the way in which the performance of traders
is typically monitored; in particular, it optimizes a trade-off
of return and risk in which the latter is defined by reward
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volatility: a pathwise measure of PnL variability, instead of
a theoretical variance or risk-measure abstractly defined in
population sense at an arbitrarily fixed time horizon, as in
standard risk-averse control or RL.

(4) We explicitly address the stochasticity of the optimization
horizon by an appropriate modification of the TRVO algo-
rithm.

Finally, the potential of our approach is investigated empirically
by numerical examples with the objective of hedging the CVA of a
forex (FX) forward contract.

1.1 Related literature
Hedging of derivative products has been tackled without machine
learning in countless studies. Particularly relevant to our setting
are those considering transaction costs or correlation among risk
drivers.

As for transaction costs, some authors just postulate the rules to
build and dynamically adjust the hedging portfolio, and then con-
centrate on quantifying the impact on pricing: the earliest attempt in
this direction was probably Leland [27], followed by Dewynne et al.
[18] and many others up to the recent Burnett [7]. Other authors
try to optimize the hedging strategy by stochastic control tools,
getting either numerical or asymptotic solutions: e.g. Davis et al.
[17], Hodges and Neuberger [22], Whalley and Wilmott [42], Za-
kamouline [43] just to mention a few. The objective is usually utility
maximization, often defined on terminal wealth, although some
authors try definitions based on the local PnL [e.g. 25] which are
closer in spirit to our approach.

As for the impact of correlation, the greatest attention was drawn
by the specific “shadow-delta” case of co-movements of an asset
and its volatility [1–3, 14, 23, 39]. A generalization to a generic
set of factors with any cardinality was described in Daluiso and
Morini [15], which is unusually close to our research in the choice
of the numerical example: indeed, the case study is CVA hedging,
although for an interest rate swap.

Turning to machine learning, hedging has been constantly men-
tioned since the earliest applications to finance [24, 28], but it was
not until recently that Reinforcement Learning was attempted with
hedging as the primary focus. There is a major distinction between
those optimizing a risk measure defined on final performance, and
those which use a pricing model to define a daily performance.
The first family includes the “deep hedging” series: Buehler et al.
[6], Mikkilä and Kanniainen [30], Murray et al. [32]. The present
work belongs to the second family and is particularly aligned with
the point of view of Vittori et al. [41] and Mandelli et al. [29]. It
has also a relevant aspect in common with Cao et al. [9, 10] in that
they discuss the possibility to price with a model and simulate with
a different one. Further papers which work on the the daily PnL
include Cannelli et al. [8], Du et al. [19], Halperin [20, 21], Kolm
and Ritter [26], Vittori et al. [40].

2 REINFORCEMENT LEARNING AND ITS
APPLICATION TO HEDGING

Reinforcement Learning [36] is a machine learning framework
for sequential decision-making processes, and as such we deem it
suitable for our CVA hedging problem.

2.1 Reinforcement learning definitions
The basic building block to apply RL algorithms to a problem is a
description of the latter as a Markov Decision Process (MDP) [34].

Definition 2.1 (Markov Decision Process). A discrete-time
MDP is defined as a tuple ⟨S,A,P,R, 𝛾, 𝜇⟩, whereS is the state space,
A the action space, P(·|𝑠, 𝑎) is a Markovian transition model that
assigns to each state-action pair (𝑠, 𝑎) the probability of reaching the
next state 𝑠′, R(𝑠, 𝑎) is a bounded reward function, 𝛾 ∈ [0, 1) is the
discount factor, and 𝜇 is the distribution of the initial state. The policy
of an agent is characterized by 𝜋 (·|𝑠), which defines for each state 𝑠
an action with a probability distribution over the action space.

We consider finite horizon problems in which future rewards
are exponentially discounted with 𝛾 . Let us define a trajectory as a
sequence of states, actions, and rewards, up to a stopping time 𝜀:

(𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, ..., 𝑠𝜀−1, 𝑎𝜀−1, 𝑟𝜀 ) .

Remark 2.1 (Termination time). The episode termination timestep
𝜀 can be modelled without loss of generality as the first time at which
the state 𝑠𝜀 would enter an absorbing termination region T ⊂ S, so
that its law is included in the definition of P. We suppose that 𝜀 > 0;
moreover, if 𝛾 = 1, we require that 𝜀 is almost surely finite for every
choice of 𝜋 .1

We then define the discounted sum of the rewards of a trajectory:

G =

𝜀∑︁
𝑖=1

𝛾𝑖−1𝑟𝑖 .

The objective in risk-neutral RL is the maximization of the ex-
pected return, given an initial state distribution:

𝐽𝜋 B E𝜋
𝑠0∼𝜇

[G] .

We also introduce its normalized version as:

𝐽𝜋 B E𝜋
𝑠0∼𝜇

[
Γ−1G

]
, Γ =

𝜀∑︁
𝑖=1

𝛾𝑖−1 .

Remark 2.2 (Differences from infinite horizon). The nor-
malization factor Γ is chosen so that the weighting

(
𝛾𝑖−1Γ−1)

𝑖=1,...,𝜀
is a probability measure on the set of time steps {1, . . . , 𝜀}. The origi-
nal definition was written for an infinite horizon problem, hence it
required 𝛾 < 1 and used Γ = (1 − 𝛾)−1; the above is adapted to a
finite random horizon, allowing for 𝛾 ≤ 1 and giving

Γ =
1 − 𝛾𝜀

1 − 𝛾
if 𝛾 < 1, Γ = 𝜀 if 𝛾 = 1.

2.2 Risk-aversion in reinforcement learning
A number of modified risk-aware objectives have been studied, for
example introducing a trade-off with the minimization of variance
of the returns, in a mean-variance [33, 38] or Sharpe ratio [31] fash-
ion. Others, such as Tamar et al. [37], have studied the minimization
of CVaR or more generally of a coherent risk measure.

Nevertheless, all these approaches consider only the minimiza-
tion of the long-term risk, while in financial trading interim results
are also fundamental, and keeping a low-varying intermediate PnL
1For 𝛾 < 1 one can be easily weaken the requirement thanks to the exponential decay
of 𝛾𝑁 , but this is irrelevant for our purposes.
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becomes crucial. Moreover, the analytical intractability of these
formulations does not allow the related algorithms to perform (in
terms of learning improvements) as the state-of-the-art algorithms
in the risk-neutral RL framework, such as Trust Region Policy Opti-
mization (TRPO) [35]. For these reasons, Bisi et al. [4] introduced a
new risk measure, which takes into account the variance of the re-
ward at each time-step with respect to state visitation probabilities:

Definition 2.2 (Unnormalized reward volatility). The un-
normalized reward volatility a.k.a. unnormalized reward variance is
expressed as:

𝜈2
𝜋 = E𝜋

𝑠0∼𝜇

[
𝜀∑︁
𝑖=1

𝛾𝑖−1 (𝑟𝑖 − 𝐽𝜋 )2
]
.

Remark 2.3 (Differences from infinite horizon). A factor
Γ−1 inside the expected value would make 𝜈2

𝜋 a true variance across
population and time, giving the (normalized) reward volatility 𝜈2

𝜋

defined in the original infinite-horizon formulation. Here we remove
that factor because we believe that with stochastic episode lengths,
an underweighting of returns belonging to longer episodes would be
financially inappropriate. Note that when Γ is deterministic as in
the original paper, putting or removing a multiplier in the definition
of 𝜈2

𝜋 is just a matter of notation, since it can be absorbed in the
risk-aversion coefficient 𝛽 defined here below.

In most trading and even hedging applications, achieving a profit
is at least as relevant as being risk-averse thus, we decide to consider
an objective that handles the risk-return trade-off through a risk-
aversion coefficient, the parameter 𝛽 . The objective related to the
policy 𝜋 can be defined as:

𝜂𝜋 B 𝐽𝜋 − 𝛽𝜈2
𝜋 ,

called mean-volatility hereafter, where 𝛽 ≥ 0 allows to trade-off
expected return maximization with risk minimization. Once more,
the original normalized goal 𝜂𝜋 B 𝐽𝜋 − 𝛽𝜈2

𝜋 [4] is just a multiple
of ours in deterministic horizon settings. On the other hand, the
standard mean-variance objective is 𝐽𝜋 − 𝛽𝜎2

𝜋 , where 𝜎𝜋 is the
return variance as defined in Tamar and Mannor [38]:

𝜎2
𝜋 B E𝜋

𝑠0∼𝜇

[(
G − 𝐽𝜋

)2
]
.

Remark 2.4 (Time inconsistency). The optimal policy for the
mean-volatility objective may be time-inconsistent, i.e. it is not guar-
anteed that it is also optimal for the conditional mean-volatility as
seen from future states. While non-standard objectives have been pro-
posed to fix this seemingly paradoxical effect [see e.g. 12], we point out
that time-inconsistency is also generated by more traditional objec-
tives based on return variance or risk measures, and has not prevented
their adoption in practice.

It is possible to generalize the TRVO algorithm and proofs to
finite and stochastic horizons. We have used the generalized version
for the experiments in this paper, but have not included the theory
in the interest of space.

3 FINANCIAL ENVIRONMENT
3.1 Mathematical setting
The financial universe is described by the following objects:

• ℋ: the set of assets that can appear in the trading book; in
general, it includes the CVA that must be hedged and a finite
collection of hedging and funding instruments.

• 𝒞: the set of currencies which appear in the book, where 𝑐
is the main currency used to measure the performance of
the trader.

• 𝑡 : optimization horizon.
The book dynamics are fully specified by any model for the

following processes:
• 𝜙

𝑐1𝑐2
𝑡 : fair price in currency 𝑐2 of a unit of currency 𝑐1 for

any 𝑐1, 𝑐2 ∈ 𝒞.
• 𝑋ℎ

𝑡 : book valuation (price) of asset ℎ at time 𝑡 , expressed in
an asset specific currency 𝑐ℎ .

• 𝑌
ℎ,𝑐
𝑡 : cumulative cash flows of asset ℎ in currency 𝑐 which
are paid up to time 𝑡 inclusive.

• 𝑁ℎ
𝑡 : units of asset ℎ held at time 𝑡 .

• 𝑇𝑡 (𝑵 ): cumulative costs of trading strategy 𝑵 up to time 𝑡
exclusive, expressed in the evaluation currency 𝑐 .

Indeed, given the above definitions, one can define the cumula-
tive gains of the book as

𝐺𝑡 :=
∑︁
ℎ∈ℋ

∫ 𝑡

0
𝑁ℎ
𝑠 𝑑𝑋

ℎ
𝑠︸               ︷︷               ︸

capital gains

+
∑︁
ℎ∈ℋ

∫ 𝑡

0
𝑁ℎ
𝑠 𝑑𝑌

ℎ
𝑠︸               ︷︷               ︸

cash flow gains

−𝑇𝑡 (𝑵 )︸︷︷︸
trans. costs

, (1)

where we introduced the conversion of 𝑋ℎ
𝑡 and (𝑌ℎ,𝑐

𝑡 )𝑐∈𝒞 into the
main evaluation currency 𝑐:

𝑋ℎ
𝑡 := 𝜙

𝑐ℎ𝑐
𝑡 𝑋ℎ

𝑡 ,

𝑌ℎ
𝑡 :=

∑︁
𝑐∈𝒞

∫ 𝑡

0
𝜙𝑐𝑐𝑠 𝑑𝑌

ℎ,𝑐
𝑠 =

∑︁
𝑐∈𝒞

∫ 𝑡

0

(
𝜙𝑐𝑐𝑠−𝑑𝑌

ℎ,𝑐
𝑠 + 𝑑 [𝜙𝑐𝑐 , 𝑌ℎ,𝑐 ]𝑠

)
.

3.1.1 Constrained and free variables. The set of admissible alloca-
tions 𝑵 is subject to a set of financial constraints listed below:

(1) no CVA transfer: the CVA remains in the book for the whole
optimization horizon. This translates into the constraint
𝑁CVA
𝑡 ≡ 1.

(2) Self financing: no cash is injected or withdrawn. In particular
the variations in the bank account ℎ̄ in currency 𝑐 equal the
gains or losses deriving from the other assets.

We conclude that the free variables for optimization are the quantity
of the hedging instruments to be held:

𝑵ℱ

𝑡 := (𝑁ℎ
𝑡 )ℎ∈ℱ, where ℱ := ℋ \ {CVA, ℎ̄}.

3.2 Financial instruments: price and dividend
processes

This section specifies the book value processes 𝑋ℎ , the dividend
processes 𝑌ℎ,𝑐 , and the cost process 𝑇 = 𝑇 (𝑵 ).

3.2.1 Credit Valuation Adjustment. We identify by ℎ = CVA the
book item representing the CVA to be hedged.

The price process 𝑋CVA
𝑡 is the risk-neutral 𝑡-conditional expecta-

tion EQ𝑡𝑡 of the loss LGD𝜏 < 0 recorded at the counterparty default
time 𝜏 [11]:

𝑋CVA
𝑡 = 1𝜏>𝑡E

Q𝑡
𝑡 [𝐷 (𝑡, 𝜏)LGD𝜏 ]
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computed with some pricing model Q𝑡 and discount factor 𝐷 (𝑡, 𝜏);
note that 𝑋CVA

𝑡 is by convention a non positive quantity. We allow
the model Q𝑡 to depend on time inconsistently with the real-world
dynamics of LGD𝜏 , e.g. because of periodic model recalibration,
since pricing rules for a complex object like CVA typically give up
maximum realism due to model risk and computational feasibility
concerns.

The dividend process 𝑌CVA should be a jump process with a
single random negative jump at default time 𝜏 equal to the loss
given default LGD𝜏 .

In Section 5, we consider the CVA of an uncollateralized portfolio
consisting of a single FX forward, namely an agreement to receive
at a future time 𝑡 ′ > 𝑡 an amount 𝑁𝑐1 in a currency 𝑐1 paying an
amount 𝑁𝑐 in currency 𝑐 . We suppose that the loss at default LGD𝜏

is a fixed fraction (1 − Rec) of the positive value max(𝐸𝜏 , 0), of the
contract, where 𝐸𝑡 = 𝜙

𝑐1𝑐
𝑡 𝑃

𝑐1
𝑡 (𝑡 ′)𝑁𝑐1 − 𝑃𝑐𝑡 (𝑡 ′)𝑁𝑐 for suitable deter-

ministic interest rate curves 𝑃𝑐1 , 𝑃𝑐 . The pricing rule Q𝑡 assumes
an instantaneous default probability process 𝜆, independent of 𝜙𝑐1𝑐 .

3.2.2 Credit Default Swaps. We suppose thatℋ can include Credit
Default Swaps (CDS) on the derivative counterparty. By convention,
we decide that 𝑁ℎ

𝑡 > 0 for such instruments indicates that the agent
has a long position with respect to the risk (he sold protection).
The price process 𝑋ℎ

𝑡 is the upfront price. Denoting by 𝜏 the default
time of the counterparty, the dividend process is a step function
with positive jumps equal to the quarterly coupons𝐶 on a schedule
𝑇ℎ
𝑖
contingent to counterparty survival, and a negative jump equal

to the protection flow (1 − Rec) at default 𝜏 .

3.2.3 Cash accounts. We call “cash account” any element 𝑏 ∈ ℋ

such that 𝑋𝑏
𝑡 ≡ 1 yielding a continuous flow 𝑑𝑌𝑏

𝑡 = 𝑟𝑏𝑡 𝑑𝑡 . We sup-
pose thatℋ includes a funding account 𝑓 (𝑐) ∈ ℋ for each currency
𝑐 ∈ 𝒞. Recall that the home funding 𝑓 (𝑐) was already introduced
in section 3.1.1 with the notation ℎ̄.

3.2.4 Rebalancing costs. To model transaction costs, we suppose
that the following market operations are used to rebalance the
portfolio:

• non-cash assets (ℎ ≠ 𝑓 (𝑐) for all 𝑐 ∈ 𝒞) can be exchanged
for cash in the asset currency 𝑐ℎ , paying a unit cost 𝛾ℎ𝑡 . The
cumulated 𝑐-converted cost of such operations is:

𝑇ℎ
𝑡 :=

∫ 𝑡

0
𝜙
𝑐ℎ𝑐
𝑠 𝑑𝑇ℎ

𝑠 =

∫ 𝑡

0
𝜙
𝑐ℎ𝑐
𝑠 𝛾ℎ𝑠 |𝑑𝑁ℎ

𝑠 |.

• Foreign funding accounts 𝑓 (𝑐) for 𝑐 ≠ 𝑐 can be converted
to domestic cash ℎ̄ with spot operations on the foreign ex-
changemarket, paying a unit cost𝛾𝑐𝑡 . The cumulated notional
𝐹𝑐𝑡 in 𝑐 currency of such operations up to time 𝑡 excluded
must be computed net of all other 𝑐 denominated cash flows,
so it satisfies by definition

𝑁
𝑓 (𝑐 )
𝑡− = 𝐹𝑐𝑡 −

∑︁
ℎ∈ℋ\{ 𝑓 (𝑐 ) }

𝑐ℎ=𝑐

𝑇ℎ
𝑡 +

∑︁
ℎ∈ℋ

∫ 𝑡−

0
𝑁ℎ
𝑠 𝑑𝑌

ℎ,𝑐
𝑠 ,

and generates a cost

𝑇
𝑓 (𝑐 )
𝑡 =

∫ 𝑡

0
𝛾𝑐𝑠 |𝑑𝐹𝑐𝑠 |.

Finally, we can compute the total transaction costs as

𝑇𝑡 (𝑵 ) :=
∑︁
ℎ∈ℋ

𝑇ℎ
𝑡 .

4 IMPLEMENTATION
This section describes a set of modelling choices we made to test
numerically the above approach.

4.1 Financial setting
In this subsection we specify the financial environment with the
general notation of Section 3.

4.1.1 Assets and currencies. The hedged CVA is due to a single
EURUSD FX forward. The set of currencies which appear in the
book are 𝒞 = {EUR,USD} and EUR is considered to be the main
evaluation currency, i.e. 𝑐 = EUR.

We suppose that ℋ includes a CDS on the CVA counterparty
with a fixed maturity date, which we identify with the notation
ℎ = CDS.2 The set of assets is therefore

ℋ = {CVA,CDS, 𝑓 (EUR), 𝑓 (USD)} .

Under these assumptions the free set isℱ = {CDS, 𝑓 (USD)}, which
we call informally “hedging assets”. We also assume that interest
rates are zero for all cash accounts, and so are their dividend pro-
cesses.

4.1.2 Data generation. The risk drivers used to generate the dataset
are the FX rate 𝜙𝑡 := 𝜙USDEUR𝑡 and the default intensity 𝜆𝑡 .

We simulate the FX rate via a Geometric BrownianMotion (GBM)
𝑑𝜙𝑡

𝜙𝑡
= 𝜎𝜙 𝑑𝑊

𝜙
𝑡 , (2)

with null drift, volatility 𝜎𝜙 , and Wiener process𝑊 𝜙
𝑡 .

We simulate the default intensity via the Cox Ingersoll Ross (CIR)
model [13]

𝑑𝜆𝑡 = 𝑘𝜆 (𝜃𝜆 − 𝜆𝑡 ) 𝑑𝑡 + 𝜎𝜆
√︁
𝜆𝑡 𝑑𝑊

𝜆
𝑡 , (3)

where 𝑘𝜆 is the mean reversion speed, 𝜃𝜆 is the long term intensity,
𝜎𝜆 the volatility, and𝑊 𝜆

𝑡 another Wiener process.
An instantaneous correlation 𝜌P

𝜆𝜙
between the stochastic terms

𝑑𝑊
𝜙
𝑡 and 𝑑𝑊 𝜆

𝑡 can be naturally introduced, which affects only
mildly the level of the FX rate at the default time, but is sufficient
to generate a correlation between the dynamics of the FX rate and
the credit spread, whose effects on the hedging problem are among
the main topics of this paper.

The CVA pricing model Q𝑡 assumes the same dynamics (2)-(3),
but allows for a different correlation 𝜌

Q
𝜆𝜙

between the Brownian
motions, e.g. 𝜌Q

𝜆𝜙
= 0 ≠ 𝜌P

𝜆𝜙
.

FX trading costs are modelled by a constant 𝛾USD𝑡 = 𝛾USD. Anal-
ogously, once 𝜆𝑡 is simulated, we generate bid and ask default inten-
sities 𝜆± by applying a semi-spread𝛾𝜆 , i.e. 𝜆±𝑡 = 𝜆𝑡 ± 𝛾𝜆 . Eventually,
standard pricing formulas [e.g. 5] map the simulated 𝜆±𝑡 to bid and
ask prices 𝑋CDS,±

𝑡 ; we take their midpoint for the book value 𝑋CDS
𝑡 ,

and their half-difference for the infinitesimal transaction cost 𝛾CDS𝑡 .

2For long trading horizons, one may want to consider a synthetic rolling instrument, to
use always the most liquid on-the-run maturity for hedging. In such case, the dividend
process should be carefully defined to include the roll costs.
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4.2 Reinforcement learning setting
In this subsection we specify the MDP with the general notation of
Section 2.1.

4.2.1 State. The state vector includes:

(1) Time 𝑡 to CVA maturity, in days.
(2) Value of the risk drivers 𝜆𝑡 and 𝜙𝑡 .
(3) Current allocation in the hedging assets, expressed without

loss of generality by the first order sensitivity of the hedging
book to 𝜆𝑡 and 𝜙𝑡 .

(4) First order sensitivities of the CVA w.r.t. 𝜆𝑡 and 𝜙𝑡 ;
(5) First order sensitivity of the CDS w.r.t. 𝜆𝑡 .

Item 1 is included because the hedged object is non-stationary
due to its fixed maturity. Items 2 and 3 are a complete status vector
for theMarkovian dynamics. Items 4 and 5 are functions of (𝑡, 𝜆𝑡 , 𝜙𝑡 )
which the algorithm may learn by itself, but every modern front
office system already calculates first order derivatives of all book
items, so there is no reason not to give them to the RL agent as useful
pre-engineered features. A similar consideration applies to item 3:
onemay naively put into the state the notionals𝑁CDS and𝑁 𝑓 (USD) ,
but sensitivities are universally considered by practitioners as a
better representation of risk when trading, so we let the AI trader
start from information in this form.

4.2.2 Action. The action vector𝑨𝑡𝑖 should describe the allocations
in the interval (𝑡𝑖 , 𝑡𝑖+1]. For the same reasons as in Section 4.2.1,
we express them as the sensitivity of the allocation to 𝜆𝑡 and to 𝜙𝑡 .

4.2.3 Reward. Following the definition of the gain process in (1),
the signed increment 𝐺𝑡 −𝐺𝑠 represents the performance over the
time period [𝑠, 𝑡) of the hedging strategy, usually referred to as PnL.
Traders aim at maximizing such increment and at controlling its
variability, not only in distributional sense as the possibility of a
large negative PnL over the full trading period [𝑡0, 𝑡), but also in
the time direction: e.g., they cannot accept recording a large loss
𝐺𝑡/2 ≪ 0, even if it leads eventually to a positive gain 𝐺𝑡 > 0 with
high probability. All of this suggests that a good description of the
trader’s objective should consider a set of increments over a time
grid 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑡 : 𝑅𝑡𝑖+1 = 𝐺𝑡𝑖+1 −𝐺𝑡𝑖 , to be maximized in
volatility-averse sense. The reward is thus defined as:

𝑅𝑡𝑖+1=
∑︁
ℎ∈ℋ

𝑁ℎ
𝑡𝑖+1 (𝑋

ℎ
𝑡𝑖+1 − 𝑋ℎ

𝑡𝑖
+ 𝑌ℎ

𝑡𝑖+1 − 𝑌ℎ
𝑡𝑖
) −𝑇𝑡𝑖+1 (𝑵 ) +𝑇𝑡𝑖 (𝑵 ) .

Remark 4.1 (Role of the pricing model). The return of an
episode G =

∑𝑡𝑁
𝑖=1 𝛾

𝑖𝑅𝑡𝑖 collapses telescopically to 𝐺𝑡 if 𝛾 = 1. Its
maximization is equivalent to the maximization of the eventual profit
without risk-aversion; moreover, if the optimization horizon 𝑡 is the
maturity of the portfolio, then there is no dependence of the objective
on the pricing modelQ𝑡 . The latter plays a role only when either𝛾 < 1
(encoding a preference in PnL timing, be it real or a bias introduced
for better algorithm convergence), or when the time distribution of
the PnL is part of the risk-aversion as in TRVO.

4.2.4 Episode termination time. 𝜀 corresponds to the earliest be-
tween the trading horizon 𝑡 and default time 𝜏 (discretized on the
time grid).

5 NUMERICAL RESULTS
We collect here empirical evidence on the behaviour of the algo-
rithm and of the optimized policy with different choices of model
parameters and algorithmic hyper-parameters.

5.1 Common parameters and assumptions
Unless otherwise specifically stated, we consider the same maturity
date for the FX forward and the CDS and we set it equal to 5 years.
Furthermore, we choose 𝑁USD = 1.1, 𝑁 EUR = 1, mid FX rate at the
pricing date equal to 1, 𝜎𝜙 = 10%. Concerning the CIR model, we
calibrate it to so to fit a flat credit curve with fixed spread equal
to 1% (100 bps) and an at-the-money payer credit swaption with 1-
year expiry and 5-year final maturity with a 50% implied volatility3,
obtaining 𝜆𝑡0 = 1.66%, 𝑘𝜆 = 0.3769, 𝜃𝜆 = 1.87% and 𝜎𝜆 = 19.22%.

The time grid 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 spans 90 trading days and con-
siders a 2-hours spacing within each trading day, for a total of 5
timesteps per day; note that this realistically implies a non-uniform
spacing in calendar time, with larger steps (and market movements)
across the nights, and even larger no-action gaps across weekends.
The actor and critic in the TRVO algorithm are represented by a
neural network with two hidden layers of 10 units each and hyper-
bolic tangent activation function, and trained with batches of 500
episodes.

Performance metrics are computed with𝛾 = 1 even though𝛾 < 1
is used in training to ease convergence.

5.2 Baseline
We consider as baseline an environment with null transaction costs
and null correlation between the two Brownian drivers: 𝜌P

𝜆𝜙
=

𝜌
Q
𝜆𝜙

= 0.
We neglect the possibility of defaults, which should be very

unlikely for an IG CDS considering the episode length. Note that the
no-default assumption could in principle induce a bias, since selling
(buying) protection on CDS means experiencing a benefit (cost)
from the premium leg without a counterbalancing cost (benefit)
from the protection leg, thus, inducing an “aggressive” agent to
hold a long credit outright position. However, our results show that
this bias is essentially immaterial for an IG CDS curve.

With the above assumptions, any trading strategy in the hedging
instruments has zero expected value, because we are simulating
such assets in a risk-neutral model with null interest rates and
transaction costs. Therefore, for any positive level of risk-aversion
coefficient 𝛽 and any value of the discount factor 𝛾 , we expect the
optimal strategy to just minimize the reward volatility. Given the
high frequency of rebalancing, such optimum should be very close
to the classical hedge matching first order sensitivities of the CVA.

Therefore, we performed 1500 optimization steps with three
different values of 𝛽 , and with 𝛾 fixed to 0.99. The out-of-sample
statistics show that the optimized policies perform similar to the
delta hedge: the return average and standard deviation differ bymax
2%, the reward standard deviation differs by max 1%. The actions
are in perfect overlap both in CDS and FX space.

3These values are compatible with the market values observable between mid 2022
and mid 2023 for the EURUSD and for a generic investment-grade (IG) CDS curve.
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Figure 1: The plot represents the CDS action for an out-of-
sample episode, expressed as the sensitivity to 𝝀𝒕 of the hedg-
ing portfolio, chosen by the delta hedging strategy and by
agents trained at different values of the risk-aversion coeffi-
cient 𝜷 , in an environment that includes transaction costs.
In this simulation 𝜸𝝀 = 1.66e−3 (i.e., bid-ask semi-spread of
about 10 bps), 𝜸USD = 5e−5, and 𝝆P

𝝀𝝓
= 0.
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Figure 2: Each dot represents the average performance of an
agent over 2000 out-of-sample episodes in terms of return
and unnormalized reward volatility, depending on 𝜷 (anno-
tated next to each dot) and 𝜸𝝀 . The CDS bid-ask semi-spread
is about 5 bps in the left plot and 30 bps in the right plot;
in each exercise 𝜸USD = 5e−5, 𝝆P

𝝀𝝓
= 0 and CVA at inception

equals -0.0712 Eur.

5.3 With transaction costs
In this section, we change the baseline setting of Section 5.2 by
including transaction costs.

In this situation the agent improves on delta hedging by trading
less frequently, to avoid frequent small movements of the allocation
in opposite directions, which would be costly without significant
risk reductions. This results in a smoothing of the hedging po-
sition, as shown in Figure 1, for a specific testing episode. The
smoothing is more pronounced if the risk-aversion is lower, while
at high risk-aversion the agent strategy and delta hedging coincide,
as previously shown by [41] in an equity environment. Similarly,
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Figure 3: Each dot represents the difference between agent
and delta hedging on a simulated market in terms of FX ac-
tion and CDS action, expressed respectively as the sensitivity
to 𝝓𝒕 and 𝝀𝒕 of the hedging portfolio, depending on 𝜷 and
𝝆P
𝝀𝝓

. In each exercise 𝜸𝝀 = 8.3e−4 (i.e., bid-ask semi-spread
of about 5 bps), and 𝜸USD = 5e−5.

smoothing is more pronounced if transaction costs are higher; for
FX, where realistic costs are extremely low, the agent’s action over-
laps delta hedging, hence its plot is omitted. The economic effects of
the smoothing are summarized in Figure 2: at lower risk-aversions
the agent’s return is higher, while the reward volatility increases.
The obtained frontiers dominate delta hedging already at relatively
low costs (see the l.h.s. of Figure 2), at higher costs dominance
increases (plot on the r.h.s.).

5.4 With correlation (and costs)
In this section, we consider correlation between the Brownian
motions driving 𝜆𝑡 and 𝜙𝑡 in the evolution of the risk drivers but
not in the CVA pricing formula, as anticipated in Section 4.1.2.

Without transaction costs the first order sensitivities are still
close to optimal, so in the figures we represent only results with
costs. As we introduce transaction costs, the agent implements the
smoothing strategy observed in Section 5.3, but slightly modifies
the policy to exploit the expected co-movements of the risk drivers
and save on costly rebalances. This can be seen in Figure 3: the
figure on the left represents how the actions of the agent differ
from the delta hedge with no correlation between the risk drivers
and we can observe that there is no linear relationship, thus we
obtain a symmetric shape with more dispersion in the CDS direc-
tion, which is caused by the fact that the smoothing on the credit
actions is more evident due to higher costs. If instead we look at
the figure on the right, where 𝜌P

𝜆𝜙
= 0.5, we can clearly notice a

linear relationship, specifically when the agent is over-hedging
compared to the delta hedging strategy in terms of credit, then it is
under-hedging (w.r.t. delta hedge) on the FX side. This is because,
since the two risk drivers are correlated, it is possible to hedge some
of the credit risk using FX, and since it is less expensive to trade
FX, the agent exploits this correlation to save on trading costs. This
improvement is obtained when the CVA pricing is misspecified as
a zero-correlation pricer, this is a strong indication that a complete
coherence between P and Q dynamics is not strictly necessary for
the agent to learn an efficient policy.
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Figure 4: Each dot represents the average performance
of an agent over 2000 out-of-sample episodes in terms
of return and unnormalized reward volatility, depend-
ing on 𝜷 (annotated next to each dot). In each exercise
𝜸USD = 5e−5, 𝜸𝝀 = 8.3e−4 (i.e., bid-ask semi-spread of about
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The blue dots are built from a policy trained on data with
the same correlation 𝝆P

𝝀𝝓
= 0.5 and red dots from a policy

trained on data with 𝝆P
𝝀𝝓

= 0.

Figure 4 shows the average results of two different policies with
different risk-aversion coefficients (similarly to Figure 2). The envi-
ronment in which we are testing considers a 50% correlation. The
red policy has been trained with no correlation, while the blue
policy has been trained with correlation. What we can see is that,
as expected, the red policy performs better. On the other hand, this
superior performance is only marginal, indicating how the agent is
robust to changes in the behavior of the environment and thus of
the risk drivers.

5.5 With default
In this section we go back to the zero-cost case and we face coun-
teparties with credit standing spreading between High Yield and
distressed. We considered credit curves with fixed spread equal
to 500 bps, 1000 bps, 1500 bps, and 3000 bps and we calibrate a
CIR model for each of them. These levels are incompatible with
a no-default framework, so we adopt the developments of [16] to
accommodate a stochastic termination, both in the RL framework
(see Section 4.2.4) and in the simulations.

As in Section 5.2, any hedging strategies with the above assump-
tions have zero expected value. Therefore, for any positive level of
risk-aversion coefficient 𝛽 we expect the optimal strategy to just
minimize the reward volatility. In this section we only consider
𝛽 = 104, which obtained a good convergence in the training phase,
but other cases have also been tested with comparable results.

We consider an additional benchmark hedging strategy, defined
so that the notional of hedging CDS at a certain time is chosen
to perfectly offset the possible loss the FX forward could incur if
the counterparty defaults at that time. We call this strategy “jump
hedge”, since it aims at ensuring that, at default, the loss due to the
counterparty risk is perfectly balanced by the CDS protection.
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Figure 5: The plots shows the CDS action chosen by the agent
and the benchmarks delta hedging and jump hedging, all
expressed as the sensitivity to 𝝀𝒕 of the hedging portfolio,
for an out-of-sample episode in a zero-cost environment.
The initial value for the credit process is 𝝀0 = 0.22412, which
corresponds to a CDS spread of about 1500 bps.

We expect the agent to select a trade-off between the delta hedg-
ing and jump hedging strategies since it is only allowed to trade
one CDS expiry. In fact, neither of the two strategies is optimal:
the former allows for a going concern hedge (i.e., when 𝜏 > 𝑡 ); the
latter gives a perfect hedge only at default time (i.e., if 𝜏 ≤ 𝑡 ). This
trade-off is indeed what the trained policy does in terms of CDS
actions, as can be observed in Figure 5 for a specific testing episode.
The plot of FX actions is instead omitted since it would have shown
a perfect overlap between agent’s and benchmarks’ actions.

Table 1 summarizes the performance of the agent and the bench-
marks. It shows that the agent achieves better results in terms of
reward volatility. Average return is also shown, even if it should be
statistically insignificant and hence irrelevant for the performance
measurement.

6 CONCLUSION
Reinforcement Learning is a promising tool to optimize hedging
strategies under a realistic financial description, without constraints
on analytical tractability and dimensionality typical of classical
control approaches. In this paper, we showed how RL can indeed be
used for hedging of a CVA, a hybrid product which can depend on
several risk factors, including the non-diffusive default indicator.

With this aim, we started by describing a concept of risk-aversion
that considers the interest of traders in reducing profit and loss
swings in the time direction.

Secondly, we introduced a flexible setup for the description of
the CVA hedging mechanics, with almost no assumptions on the
underlying stochastic processes. We used this flexibility to vary
the environment in the numerical experiments, and study how
different elements of realism affect the optimized policy. The tests
show that the algorithm converges to theoretical optima when
available, while it finds nontrivial improvements to the optima in
presence of transaction costs, correlation among the risk drivers,
or non negligible probabilities of counterparty default.
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Table 1: Performance metrics of the trained agents, delta
hedging and jump hedging, in the setting of Section 5.5, com-
puted over 2000 out-of-sample episodes for different levels
of the flat CDS spread curve to which the CIR model is cali-
brated.

Policy CDS Spread 𝐽𝜋 𝜈2
𝜋

TRVO 𝛽 = 104 500 3.17 × 10−5 2.78 × 10−6

Delta hedge 500 3.49 × 10−5 5.27 × 10−6

Jump hedge 500 4.56 × 10−5 3.36 × 10−6

TRVO 𝛽 = 104 1000 −0.59 × 10−5 3.73 × 10−6

Delta hedge 1000 −1.71 × 10−5 5.79 × 10−6

Jump hedge 1000 3.40 × 10−5 8.00 × 10−6

TRVO 𝛽 = 104 1500 −1.37 × 10−5 4.78 × 10−6

Delta hedge 1500 −1.77 × 10−5 6.90 × 10−6

Jump hedge 1500 0.50 × 10−5 10.24 × 10−6

TRVO 𝛽 = 104 3000 −0.49 × 10−5 1.40 × 10−6

Delta hedge 3000 0.22 × 10−5 1.73 × 10−6

Jump hedge 3000 2.14 × 10−5 2.05 × 10−6

DISCLAIMER
The opinions expressed in this document are solely those of the
authors and do not represent in any way those of their present and
past employers.

REFERENCES
[1] Carol Alexander and Leonardo M. Nogueira. 2007. Model-free hedge ratios and

scale-invariant models. Journal of Banking & Finance 31, 6 (2007), 1839–1861.
https://doi.org/10.1016/j.jbankfin.2006.11.011

[2] Carol Alexander, Alexander Rubinov, Markus Kalepky, and Stamatis Leontsinis.
2012. Regime-Dependent Smile-Adjusted Delta Hedging. Journal of Futures
Markets 32, 3 (2012), 203–229. https://doi.org/10.1002/fut.20517

[3] Bruce Bartlett. 2006. Hedging under SABR model. Wilmott Magazine 2023, 22 (2
2006), 1–4.

[4] Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello Restelli.
2020. Risk-Averse Trust Region Optimization for Reward-Volatility Reduction.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence (Virtual Event) (IJCAI ’20), Christian Bessiere (Ed.). International Joint
Conferences on Artificial Intelligence Organization, Yokohama, Japan, 4583–4589.
https://doi.org/10.24963/ijcai.2020/632

[5] Damiano Brigo and Fabio Mercurio. 2013. Interest Rate Models - Theory and
Practice. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34604-3

[6] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. 2019. Deep
Hedging. Quantitative Finance 19, 8 (2019), 1271–1291. https://doi.org/10.1080/
14697688.2019.1571683

[7] Benedict Burnett. 2021. Hedging valuation adjustment: fact and friction. Risk
Magazine (2 2021).

[8] Loris Cannelli, Giuseppe Nuti, Marzio Sala, and Oleg Szehr. 2023. Hedging using
reinforcement learning: Contextual 𝑘-armed bandit versus 𝑄-learning. The
Journal of Finance and Data Science 9 (2023), 100101. https://doi.org/10.1016/j.
jfds.2023.100101

[9] Jay Cao, Jacky Chen, Soroush Farghadani, John Hull, Zissis Poulos, Zeyu Wang,
and Jun Yuan. 2023. Gamma and Vega Hedging using Deep Distributional Re-
inforcement Learning. Frontiers in Artificial Intelligence 6, 1129370 (2023), 1–11.
https://doi.org/10.3389/frai.2023.1129370

[10] Jay Cao, Jacky Chen, John Hull, and Zissis Poulos. 2021. Deep Hedging of
Derivatives Using Reinforcement Learning. The Journal of Financial Data Science
3, 1 (2021), 10–27. https://doi.org/10.3905/jfds.2020.1.052

[11] Giovanni Cesari, John Aquilina, Niels Charpillon, Zlatko Filipović, Gordon Lee,
and Ion Manda. 2009. Modelling, Pricing, and Hedging Counterparty Credit Expo-
sure. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04454-0

[12] Anthony Coache and Sebastian Jaimungal. 2023. Reinforcement Learning with
Dynamic Convex Risk Measures. Mathematical Finance (2023), 1–31. https:
//doi.org/10.1111/mafi.12388

[13] John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross. 1985. A Theory of the
Term Structure of Interest Rates. Econometrica 53, 2 (1985), 385–407. https:
//doi.org/10.2307/1911242

[14] Stéphane Crépey. 2004. Delta-Hedging Vega Risk? Quantitative Finance 4, 5 (2004),
559–579. https://www.tandfonline.com/doi/pdf/10.1080/14697680400008718

[15] Roberto Daluiso and Massimo Morini. 2017. Hedging Efficiently under Corre-
lation. Quantitative Finance 17, 10 (2017), 1535–1547. https://doi.org/10.1080/
14697688.2017.1299201

[16] Roberto Daluiso, Marco Pinciroli, Michele Trapletti, and Edoardo Vittori. 2023.
CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning. (2023).
In preparation.

[17] Mark H. A. Davis, Vassilios G. Panas, and Thaleia Zariphopoulou. 1993. European
Option Pricing with Transaction Costs. SIAM Journal on Control and Optimization
31, 2 (1993), 470–493. https://doi.org/10.1137/0331022

[18] J. N. Dewynne, A. E. Whalley, and P. Wilmott. 1994. Path-Dependent Options and
Transaction Costs. Philosophical Transactions: Physical Sciences and Engineering
347, 1684 (1994), 517–529. http://www.jstor.org/stable/54362

[19] Jiayi Du, Muyang Jin, Petter N. Kolm, Gordon Ritter, Yixuan Wang, and Bofei
Zhang. 2020. Deep Reinforcement Learning for Option Replication and Hedging.
The Journal of Financial Data Science 2, 4 (2020), 44–57. https://doi.org/10.3905/
jfds.2020.1.045

[20] Igor Halperin. 2019. The QLBS Q-Learner Goes NuQLear: Fitted Q Iteration,
Inverse RL, and Option Portfolios. Quantitative Finance 19, 9 (2019), 1543–1553.
https://doi.org/10.1080/14697688.2019.1622302

[21] Igor Halperin. 2020. QLBS: Q-Learner in the Black-Scholes(-Merton) Worlds. The
Journal of Derivatives 28, 1 (2020), 99–122. https://doi.org/10.3905/jod.2020.1.108

[22] Stewart D. Hodges and Anthony Neuberger. 1989. Optimal Replication of Con-
tingent Claims under Transaction Costs. The Review of Futures Markets 8, 2 (11
1989), 222–239.

[23] John Hull and Alan White. 2017. Optimal Delta Hedging for Options. Journal of
Banking & Finance 82, C (2017), 180–190. https://doi.org/10.1016/j.jbankfin.2017.
05.006

[24] JamesM. Hutchinson, AndrewW. Lo, and Tomaso Poggio. 1994. A Nonparametric
Approach to Pricing and Hedging Derivative Securities Via Learning Networks.
The Journal of Finance 49, 3 (1994), 851–889. https://doi.org/10.1111/j.1540-
6261.1994.tb00081.x

[25] Jan Kallsen. 1999. A Utility Maximization Approach to Hedging in Incomplete
Markets. Mathematical Methods of Operations Research 50 (10 1999), 321––338.
https://doi.org/10.1007/s001860050100

[26] Petter N. Kolm and Gordon Ritter. 2019. Dynamic Replication and Hedging: A
Reinforcement Learning Approach. The Journal of Financial Data Science 1, 1
(2019), 159–171. https://doi.org/10.3905/jfds.2019.1.1.159

[27] Hayne E. Leland. 1985. Option Pricing and Replication with Transactions Costs.
The Journal of Finance 40, 5 (12 1985), 1283–1301. https://doi.org/10.1111/j.1540-
6261.1985.tb02383.x

[28] Mary Malliaris and Linda Salchenberger. 1993. A Neural Network Model for
Estimating Option Prices. Journal of Applied Intelligence 3 (9 1993), 193–206.
https://doi.org/10.1007/BF00871937

[29] Francesco Mandelli, Marco Pinciroli, Michele Trapletti, and Edoardo Vittori. 2023.
Reinforcement Learning for Credit Index Option Hedging. arXiv:2307.09844

[30] Oskari Mikkilä and Juho Kanniainen. 2023. Empirical Deep Hedging. Quantitative
Finance 23, 1 (2023), 111–122. https://doi.org/10.1080/14697688.2022.2136037

[31] John Moody and Matthew Saffell. 2001. Learning to Trade via Direct Re-
inforcement. IEEE Transactions on Neural Networks 12, 4 (2001), 875–889.
https://doi.org/10.1109/72.935097

[32] Phillip Murray, Ben Wood, Hans Buehler, Magnus Wiese, and Mikko Pakka-
nen. 2022. Deep Hedging: Continuous Reinforcement Learning for Hedging
of General Portfolios across Multiple Risk Aversions. In Proceedings of the
Third ACM International Conference on AI in Finance (New York, NY, USA)
(ICAIF ’22). Association for Computing Machinery, New York, NY, USA, 361–368.
https://doi.org/10.1145/3533271.3561731

[33] L. A. Prashanth and Mohammad Ghavamzadeh. 2013. Actor-Critic Algorithms
for Risk-Sensitive MDPs. In Proceedings of the 26th International Conference on
Neural Information Processing Systems (Lake Tahoe, Nevada) (NIPS ’13, Vol. 1).
Curran Associates, Inc., Red Hook, NY, USA, 252—-260. https://dl.acm.org/doi/
10.5555/2999611.2999640

[34] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316887

[35] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel.
2015. Trust Region Policy Optimization. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning (ICML ’15,
Vol. 37). JMLR.org, Lille, France, 1889–1897. https://dl.acm.org/doi/10.5555/
3045118.3045319

[36] Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differ-
ences. Machine learning 3, 1 (8 1988), 9–44. https://doi.org/10.1007/BF00115009

[37] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. 2017.
Sequential Decision Making With Coherent Risk. IEEE Transactions on Automatic
Control 62, 7 (7 2017), 3323–3338. https://doi.org/10.1109/TAC.2016.2644871

268

https://doi.org/10.1016/j.jbankfin.2006.11.011
https://doi.org/10.1002/fut.20517
https://doi.org/10.24963/ijcai.2020/632
https://doi.org/10.1007/978-3-540-34604-3
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.1016/j.jfds.2023.100101
https://doi.org/10.1016/j.jfds.2023.100101
https://doi.org/10.3389/frai.2023.1129370
https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.1007/978-3-642-04454-0
https://doi.org/10.1111/mafi.12388
https://doi.org/10.1111/mafi.12388
https://doi.org/10.2307/1911242
https://doi.org/10.2307/1911242
https://www.tandfonline.com/doi/pdf/10.1080/14697680400008718
https://doi.org/10.1080/14697688.2017.1299201
https://doi.org/10.1080/14697688.2017.1299201
https://doi.org/10.1137/0331022
http://www.jstor.org/stable/54362
https://doi.org/10.3905/jfds.2020.1.045
https://doi.org/10.3905/jfds.2020.1.045
https://doi.org/10.1080/14697688.2019.1622302
https://doi.org/10.3905/jod.2020.1.108
https://doi.org/10.1016/j.jbankfin.2017.05.006
https://doi.org/10.1016/j.jbankfin.2017.05.006
https://doi.org/10.1111/j.1540-6261.1994.tb00081.x
https://doi.org/10.1111/j.1540-6261.1994.tb00081.x
https://doi.org/10.1007/s001860050100
https://doi.org/10.3905/jfds.2019.1.1.159
https://doi.org/10.1111/j.1540-6261.1985.tb02383.x
https://doi.org/10.1111/j.1540-6261.1985.tb02383.x
https://doi.org/10.1007/BF00871937
https://arxiv.org/abs/2307.09844
https://doi.org/10.1080/14697688.2022.2136037
https://doi.org/10.1109/72.935097
https://doi.org/10.1145/3533271.3561731
https://dl.acm.org/doi/10.5555/2999611.2999640
https://dl.acm.org/doi/10.5555/2999611.2999640
https://doi.org/10.1002/9780470316887
https://dl.acm.org/doi/10.5555/3045118.3045319
https://dl.acm.org/doi/10.5555/3045118.3045319
https://doi.org/10.1007/BF00115009
https://doi.org/10.1109/TAC.2016.2644871


CVA Hedging with Reinforcement Learning ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA

[38] Aviv Tamar and Shie Mannor. 2013. Variance Adjusted Actor Critic Algorithms.
arXiv:1310.3697

[39] Sami Vähämaa. 2004. Delta hedging with the Smile. Financial Markets and
Portfolio Management 18, 3 (2004), 241––255. https://doi.org/10.1007/s11408-
004-0302-y

[40] Edoardo Vittori, Amarildo Likmeta, and Marcello Restelli. 2021. Monte Carlo Tree
Search for Trading and Hedging. In Proceedings of the Second ACM International
Conference on AI in Finance (Virtual Event) (ICAIF ’21). Association for Computing
Machinery, New York, NY, USA, Article 37, 9 pages. https://doi.org/10.1145/
3490354.3494402

[41] Edoardo Vittori, Michele Trapletti, and Marcello Restelli. 2020. Option Hedg-
ing with Risk Averse Reinforcement Learning. In Proceedings of the First ACM
International Conference on AI in Finance (New York, NY, USA) (ICAIF ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 27, 8 pages.
https://doi.org/10.1145/3383455.3422532

[42] A. E. Whalley and P. Wilmott. 1997. An Asymptotic Analysis of an Optimal
Hedging Model for Option Pricing with Transaction Costs. Mathematical Finance
7, 3 (1997), 307–324. https://doi.org/10.1111/1467-9965.00034

[43] Valeri I. Zakamouline. 2005. Optimal Hedging of Options with Transaction Costs.
Wilmott Magazine 2005, 18 (7 2005), 70–82.

269

https://arxiv.org/abs/1310.3697
https://doi.org/10.1007/s11408-004-0302-y
https://doi.org/10.1007/s11408-004-0302-y
https://doi.org/10.1145/3490354.3494402
https://doi.org/10.1145/3490354.3494402
https://doi.org/10.1145/3383455.3422532
https://doi.org/10.1111/1467-9965.00034

	Abstract
	1 Introduction
	1.1 Related literature

	2 Reinforcement Learning and its application to hedging
	2.1 Reinforcement learning definitions
	2.2 Risk-aversion in reinforcement learning

	3 Financial environment
	3.1 Mathematical setting
	3.2 Financial instruments: price and dividend processes

	4 Implementation
	4.1 Financial setting
	4.2 Reinforcement learning setting

	5 Numerical results
	5.1 Common parameters and assumptions
	5.2 Baseline
	5.3 With transaction costs
	5.4 With correlation (and costs)
	5.5 With default

	6 Conclusion
	References

