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Introduction to Banks
– Introduction
– Capital Markets
– Wealth Management
– Order Execution

Algorithms in the Financial 
Markets

– Introduction
– Reinforcement Learning
– Use cases
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Profit Centres of Banks 2

Retail Bank Private Banking/Wealth 
Management

CIB

• Receive deposits 
• Offer loans

• Mutual funds
• Hedge funds
• Private equity
• Private banking

• Investment banking: M&A, 
ECM, DCM 

• Capital markets: sales & trading
• Structured finance

Introduction – Main services offered by banks and their technological focus

• Chatbots
• Targeted ads for products
• Metaverse?

• Analysing financial statements
• Compiling slides
• Automating traders?
• Client segmentation

• Stock picking
• Portfolio optimization
• Analysing financial statements

• Difference between loan 
interest and deposit interest

• Advisory fees
• Capital gains + margins
• Interest rate

• % fee on AUM + performance 
fee

Focus next
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Capital Markets 3

Market Making Corporate Derivatives 
Business

Prop Trading

• Offering liquidity to the markets 
by continuously pricing assets.

• It is important to continuously 
hedge

• Origination of derivatives for 
corporates. 

• Collaboration between sales, 
structuring, market making, 
XVAs and Financial 
Engineering

• Trading with the bank’s capital. 
VaR limits. Intraday 
investments.

• Buy low… sell high!

CIB | Capital Markets

• Auto pricing
• Auto hedging

• Returns prediction
• Earnings prediction
• Trading signals
• Analytics

• Auto hedging
• Analysing financial statements 

and transactions to forecast 
needs
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Market Making: Offering liquidity to the markets 
CIB | Capital Markets

4

Regulated market example Dealer market example - OTC

Client buys protection 200mln
Price: ____

RFQ Example

Send
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Corporate Derivatives: Swap components
CIB | Capital Markets

5

Counterparty Market making

XVA management

Financial marketsswap Collateralized hedge
(market risk)

Counterparty risk, 
funding risk…

Derivatives sales
(intermediary)

Structuring

Collateralized hedge
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XVA’s: Valuation adjustments (1/2)
CIB | Capital Markets
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Valuation 
Adjustment Description

CVA Counterparty credit risk. An extra charge given the risk of the counterparty

DVA Own counterparty risk. A discount on the price in exchange for my liability.

FVA Funding cost (or benefit) if the corporate derivative is ITM, then the hedge is 
OTM and I need to pay collateral which must be funded

MVA Cost of financing initial margins

KVA Capital resources required to match regulatory requirements from Basel III 
and SACCR.

CollVA, AVA …
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Profit Centres of Banks 7

Retail Bank Private Banking/Wealth 
Management

CIB

• Receive deposits 
• Offer loans

• Mutual funds
• Hedge funds
• Private equity
• Private banking

• Investment banking: M&A, 
ECM, DCM 

• Capital markets: sales & trading
• Structured finance

Introduction – Main services offered by banks and their technological focus

• Chatbots
• Ads for products
• Metaverse?

• Analysing financial statements
• Compiling slides
• Client segmentation
• Automating traders?

• Portfolio optimization
• Stock picking
• Analysing financial statements
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• Difference between loan 
interest and deposit interest

• Advisory fees
• Capital gains + margins
• Interest rate

• % fee on AUM + performance 
fee

Focus next
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Portfolio Optimization
Wealth Management 

8

Definition
• Given an investment universe of M assets, 

the objective is to decide what proportion of 
the total available budget to invest in each 
of the M assets

Background
• Modern Portfolio Optimization

[Markowitz, 1952]
▪ Calculate variance and correlations
▪ Single period

• Intertemporal CAPM
[Merton, 1969]
▪ Make assumptions on asset dynamics
▪ Multi period

• Online Portfolio Optimization
[Cover and Ordentlich, 1996]
▪ Adversarial market
▪ Multi period
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Optimal Execution
Order Execution
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Description
• In prop trading, the trader decides his strategy and 

also executes the trades
• In asset management, the portfolio manager 

decides the portfolio allocation, and the execution 
is done by an execution desk

• When the execution desk receives an order of size 
X, the objective is to execute in a specified amount 
of time, by minimizing the difference between the 
arrival price and the execution price

Limit order book example
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Smart Order Routing
Order Execution
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• Smart Order Routing (SOR): optimally splitting an order over multiple venues.

SOR

Venue 1 Venue 2 Venue 3 … Venue N

Large order
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11

Introduction to Banks
– Introduction
– Capital Markets
– Wealth Management
– Order Execution

Algorithms in the 
Financial Markets

– Introduction
– Reinforcement Learning
– Use cases

AGENDA



Algorithms in the Financial Markets

1 Algorithmic Trading

2 Reinforcement Learning 

3 Quantitative Trading

4 Online Portfolio Optimization

5 Optimal Execution

6 Smart Routing with CMABs

7 Market Making with MFGs

8 Hedging with Risk Averse RL

Edoardo Vittori
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Algorithmic Trading
Market and types of trading algorithms

13

Share of algorithmic trading market by 
asset class

• Optimal execution and smart routing

• Market making 

• Hedging

• Trading

• Portfolio optimization

The algorithmic 
trading market grows 
with a CAGR of~11% 
(’21-’26)

Main types of algorithms
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Algorithmic Trading Technologies
Classification by technology type

14

Human

Algorithmic

Rule-based

Quant Finance

Classic

Machine 
Learning

Supervised 
Learning

Reinforcement 
Learning

Human independence

Computational Complexity

Performance

Today’s focus
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Reinforcement Learning for Trading
Training, testing and use in production

15

Trained 
policy

Real time 
data Trade Market

Trade 
confirmation

Learning 
algorithm

Market 
simulator

Trained 
policy

Phase 1
• Training
• Hyperparameter 

tuning
• Backtesting

Phase 2
• Production

• TRPO 
• PPO 
• FQI
• …
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Supervised learning for Quantitative Trading
Trading system architecture using a supervised learning approach

16

Prediction 
algorithm

Real time 
data

Historical 
data

Price 
prediction

Portfolio 
optimizer

Risk 
constraints

Order

Current 
portfolio

Market

Key Points
• Necessary to create a 

labelled dataset
• Supervised algorithm 

output is a prediction
• It is necessary to have 

a portfolio optimiser



Algorithms in the Financial Markets

1 Algorithmic Trading

2 Reinforcement Learning 

3 Quantitative Trading

4 Online Portfolio Optimization

5 Optimal Execution

6 Smart Routing with CMABs

7 Market Making with MFGs

8 Hedging with Risk Averse RL

Edoardo Vittori
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Environment

State
market features
internal features

Reward
P&L

penalty

Agent

Action
portfolio position
trade

Reinforcement Learning Basics
Markov Decision Process: process which describes interaction between agent and environment

• The objective is finding the policy 𝜋 which maximizes 
the discounted sum of the rewards

• 𝐽 = max
!

𝔼"[∑𝛾"𝑅"]

18
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Q-function and Policy
RL algorithms enable the learning of the policy 𝜋

19

The objective is to find the 𝜋 that maximises 𝐽 :  𝐽 = max
!

𝔼![∑𝛾"𝑅"]

Q-learning
• Q-function

𝑄! = 𝔼! ∑𝛾"𝑅" 𝑠# , 𝑎#]

• Bellman Equation
𝑄! = 𝑟(𝑠, 𝑎)+ 𝛾𝔼$!,&![𝑄! 𝑠', 𝑎' ]

• Q-learning algorithm
𝑄"(𝑠, 𝑎) = 𝑟 𝑠, 𝑎 + 𝛾max

&!
𝑄"(𝑠', 𝑎')

• Q-learning is a tabular algorithm which can be 
generalized using function approximators such 
as Xgboost.

Policy Search
• Policy gradient theorem

∇(𝐽!" = 𝔼[∇ log 𝜋( 𝑎 𝑠 𝑄!"(𝑠, 𝑎)]

• Policy update
𝜃")* = 𝜃" + 𝛼∇(𝐽!"

• The policy is a parametric and differentiable 
function, usually a neural network
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Multi Armed Bandits (MAB)
Partial feedback algorithms – stochastic environments

20

Characteristics
• Field of research close to RL
• Objective is to learn sequential decision processes
• Online algorithms
• MAB algorithms choose at each timestep which arm to pull
• Regret guarantees: finding the best arm in sub-linear time

• Regret:
a* is the best arm
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Expert Learning
Full feedback algorithms – adversarial environments

21

Characteristics
• Field of research close to RL
• Objective is to learn sequential decision processes
• Online algorithms
• Expert learning algorithms choose at each timestep which experts 

to follow
• Regret guarantees: finding the best expert in sub-linear time

• Regret

Agent

Environment

Experts

𝑎+,"

𝑎"𝑓"(𝑎")

Expert interaction scheme



Algorithms in the Financial Markets

1 Algorithmic Trading

2 Reinforcement Learning 

3 Quantitative Trading

4 Online Portfolio Optimization

5 Optimal Execution

6 Smart Routing with CMABs

7 Market Making with MFGs

8 Hedging with Risk Averse RL
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Reinforcement Learning for Quantitative Trading
Problem description and MDP definition

23

Definition
• At each timestep, decide whether to go long, short 

or flat to maximize gains
MDP
• State: price window, bid-ask spread, current 

portfolio, date/time 
• Action: long, short, flat
• Reward: P&L – transaction costs
Characteristics
• Alpha seeking
• Low market correlation

Reward
P&L- costs

Environment

State
market info.
portfolio

Agent

Action
[long, short, flat]

Quantitative Trading
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Reinforcement Learning for FX Trading (1/2)
Experimental results - performance

24

P&L of backtest EURUSD FX trading on 2020
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Experiment

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021
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• Intraday trading on EURUSD FX

• Training with FQI on historical data 
2017-2018

• Validation on historical data 2019

• Backtesting on historical data out-
of-sample 2020
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Reinforcement Learning for FX Trading (2/2)
Experimental results - policy

25

Actions chosen by agent

D
ay

s

Time of day

Long
Flat
Short

Legend

Experiment

• Intraday trading on EURUSD FX

• Training with FQI on historical data 
2017-2018

• Validation on historical data 2019

• Backtesting on historical data out-
of-sample 2020

Can we improve?

• Market non-stationarity Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021
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Reinforcement ed Expert Learning per FX Trading
Expert Learning on FX trading

Agent

Environment

FX Experts

P&L of backtest on 2021

C
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 %
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&

L

Description
• = trading strategies
• = expert learning 

strategies

Expert interaction scheme

Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts, ICAIF 2022
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Reinforcement and Expert Learning for FX Trading
Example using Expert Learning on FX trading

Weight assigned to each expert
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Definitions and notation
• 𝒂! ∈ Δ"#$ is the portfolio allocation, with M assets
• The experts are Constant Rebalancing Portfolios (CRPs)
• 𝒂∗ = argmin𝒂∈(#$%

∑! 𝑓!(𝒂, 𝒚!) is the best CRP

• 𝑓! 𝒂, 𝒚! = − log < 𝒂, 𝒚! > is the loss

• 𝑦! =
)&,%
)&$%,%

, … , )&,#
)&$%,#

are the price relatives

• 𝑊* 𝑎$, … , 𝑎* = Π!* < 𝑎!, 𝑦! > is the wealth

• Regret

Online Portfolio Optimization
From Expert Learning to Online Portfolio Optimization (OPO)

29

OPO interaction scheme

Agent

Environment

CRP Experts
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Universal Portfolios (UP)
The first algorithm in the OPO field

30

• Regret Ο(𝑀 log𝑇)
• Computational Complexity Θ(𝑇,)
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Online Gradient Descent (OGD)
Moving towards the minimum of the log loss function

31

• Regret Ο( 𝑇)

• Computational Complexity Θ(𝑀)
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Online Gradient Descent with Momentum (OGDM)
Keeping transaction costs under control

32

• Total Regret Ο( 𝑇)

• Computational Complexity Θ(𝑀)

Dealing with Transaction Costs in Portfolio Optimization: Online Gradient Descent with Momentum, ICAIF 2020



Edoardo Vittori

Online Newton Step (ONS)
Second order algorithm

33

• Regret Ο(𝑀 log𝑇)
• Computational Complexity Θ(𝑀-)
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Algorithm Comparison
OPO experimental examples 

34

ONS performance and weights
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Wealth of expert strategies
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If we consider market impact? 35

§ Up to now we considered 
transaction costs but no market 
impact.

§ What happens if we have market 
impact?



Algorithms in the Financial Markets

1 Algorithmic Trading

2 Reinforcement Learning 

3 Quantitative Trading

4 Online Portfolio Optimization

5 Optimal Execution

6 Smart Routing with CMABs

7 Market Making with MFGs

8 Hedging with Risk Averse RL
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Limit Order Book
Definition and limit order book example

37

Example of Limit Order Book

• Limit order book is the record of all limit 
orders which have not been executed

• Limit order is an order which specifies both 
price and volume of a trade

• Market order is an order to execute 
immediately at the best price possible

Characteristics
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Reinforcement Learning for Optimal Execution
Problem definition and MDP description

38

Definition
• Execute X shares in N timesteps
• Decide at each timestep the trade to execute so to 

minimize difference between arrival and execution 
price

MDP
• State: LOB features, remaining timesteps, 

remaining quantity
• Action: 𝑥⋅TWAP with 𝑥∈{0, 0.2,…, 4} 
• Reward: distance with arrival price 

𝑟" = 1 −
𝑃./00 − 𝑃&11

𝑃./00
𝜆
𝑛"
𝑋

Reward
distance with 

arrival price

Environment

State
LOB features
time remaining
quantity remaining

Agent

Action
𝑥 ⋅ TWAP
𝑥 ∈ 0,0.2,… , 4

Optimal Execution
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Experimental Results
Return comparison between RL agent and benchmark on a market simulated with ABIDES

39

• Simulating with ABIDES the optimal execution exercise
• 30 minutes to execute 50k shares

• 𝑟" = 1 − 2()** 3 2+,,
2()**

𝜆 4&
5

Execution trajectories Average RL agent returns vs benchmark

Characteristics
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Smart Order Routing
Order Execution

41

• Smart Order Routing (SOR): optimally splitting an order over multiple venues.

SOR

Venue 1 Venue 2 Venue 3 … Venue N

Large order
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Price

Regulated Exchanges - Limit Order Book 
LOB visualization

42
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Bids Asks
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Price

Dark Pools
The latent limit order book is invisibile to the market participants

43

Vo
lu

m
e

Bids Asks

?
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Dark Pool Smart Order Routing - DPSOR
Defining SOR as a sequential decision problem

44

Task

• Create and maintain an 
estimate of hidden liquidity 
of multiple dark pools

• Make optimal joint routing 
and pricing decisions

• Optimize the dollar volume

Assumptions

• Multiple dark pools for a 
single asset

• Stationary liquidity

• Limit orders are admitted

Formulation

• Sequential decision problem where at each 
round t, an agent, given a volume V of shares 
to execute, must maximize the dollar volume 
by allocating the shares across K dark pools, 
specifying the price

Dark Pools

Dollar
volume

Agent

Allocation
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45Joint routing and pricing allocation
Defining both the dark pool and the limit price

V units to sell

…

Allocate to K dark pools

Price

Q
ua

nt
ity

Specify amount to 
allocate at a specific 
price
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Problem formalization and notation
Defining constraints and censored feedback

46

𝐴64" : amount allocated at round t to dark pool k at price 𝑝4

• We have the constraint that

• Our objective is the allocation that maximizes 
dollar volume

is the actual liquidity present at 
time t in dark pool k at price 𝑝4

Censored 
feedbackPric

e 
𝑝 4

Q
ua

nt
ity

 𝐴

Dark Pool 𝑘

Allocation

Legend
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47Censored feedback
Send small orders will keep the actual liquidity hidden

Censored feedback
we do not know actual 
liquidity

Uncensored feedback
we know exact liquidityActual liquidity 𝑠-

Allocation 𝐴-

Executed order

Legend
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Combinatorial MAB [Chen et al., 2013]
Solving the DPSOR problem by framing it as a CMAB

48

Allocation

Pric
e 

𝑝 4
Q

ua
nt

ity
 𝐴

Dark Pool 𝑘

• We are in a CMAB setting, where the superarms are all 
the combinations of         which satisfy the following 
constraint: 

• We want to minimize pseudo-regret w.r.t. the expected 
dollar value of the optimal superarm

Legend
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Estimating liquidity
Count the number of successes and failures of each triplet

49

Q
ua

nt
ity

Let 𝑋647" the probability that a specific 
allocation is successful 

Pric
e 

𝑝 4

Dark Pool 𝑘

We estimate 𝑋647" by counting the 
number of successes and failures

𝑋!"#$

𝑋!"%$
Expected probability 
of success 

LowHigh

Triplet dark pool, 
price, quantity

Legend
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Counting successes 𝜶 and failures 𝜷
Using successes and failures to estimate liquidity

50

Actual liquidity 𝑠-

Allocation 𝐴-

V
ol
um

e
Executed order

Success
𝛼 ← 𝛼 + 1

Failure
𝛽 ← 𝛽 + 1

Legend
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DP-CMAB Algorithm – 𝜃 Selection
Using successes and failures to estimate liquidity

51

DP-CUCB

Mean and uncertainty

𝑋./0-

Sample from the Beta distribution

DP-TS

Low success prob

𝑋./0-

High success prob
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Translating liquidity to allocation
Using an optimization oracle and dynamic programming to decide the allocation matrix

52

Q
ua

nt
ity

Pric
e 

𝑝 4

Dark Pool 𝑘

Pric
e 

𝑝 4

Dark Pool 𝑘

Q
ua

nt
ity

𝜽𝒕 = 𝒗𝑿𝒕 𝑨𝒕Opt 𝜽𝒕 → 𝑨*
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DP CMAB High Level Pseudo Code 53

At each round t:

• Calculate the liquidity estimate 𝜽𝒕 using 𝜶𝒕, 𝜷𝒕 and the 
appropriate update CUCB or TS

• Calculate the action matrix 𝑨𝒕 ← Opt(𝜽𝒕)

• Play allocation 𝑨𝒕

• Receive feedbacks 𝒓𝒕 from played arms

• Calculate the parameters 𝜶𝒕J𝟏 and 𝜷𝒕J𝟏

Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022
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Can we do better?
Using domain knowledge to improve learning

54

PricePrice

Vo
lu

m
e

Success

Failure

Executed (𝐴64" )

Vo
lu

m
e

Quantity 
Propagation

Full 
Propagation

Legend

Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022
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Experimental results – Dollar volume
We want to maximise dollar volume (volume times price)

55

Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022
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Dealer Markets
Market structure

57

Dealers quotes for a bond

Characteristics
• Dealer markets
• Request for quote
• High frequency job
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Reinforcement Learning for Market Making
Problem definition and MDP description

58

Market Making
Definition
• Continuously quote bid and ask prices in order to 

maximize P&L with minimizing inventory

MDP
• State: market information (prices, volumes etc.), 

current inventory
• Action: bid price, ask price
• Reward: spread P&L + inventory P&L – inventory 

penalty

Reward
spread P&L 

+ inventory P&L 
-inventory penalty

Environment

State
market info.
inventory

Agent

Action
𝑞123, 𝑞456
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Learning in Mean-Field Games
Learning a competitive strategy

59

Definitions and notation
• Assume homogeneity/anonymity

• Mean-Field ℒ represents players’ distrubtion

• 𝜋 is the policy

• Nash Equilibrium
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Experimental Results
Policy and inventory in a simulated environment

60

Policy as a function of inventory Inventory RL agent vs benchmarks

Inventory RL agent Bench. 1 Bench. 2 Bench. 3

Dealer Markets: A Reinforcement Learning Mean Field Game Approach, SSRN 2022
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Reinforcement Learning for Option Hedging
Problem definition and MDP description

62

Option Hedging
Definition
• Choose, for each timestep, the hedging portfolio 

so to minimize the price variations caused by the 
option

• A risk averse objective is necessary

MDP
• State: market prices, hedging portfolio, option 

details
• Action: hedging portfolio
• Reward: P&Lc – P&Lh – transaction costs

Reward
P&L- costs

Environment

State
market info.
current portfolio
derivative char.

Agent

Action
hedging portfolio
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Risk aversion in RL
Different approaches to risk aversion

63

High reward 
volatility

Low 
reward 
volatility

Reward volatility Return variance

C
um
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ed
 P

&
L

Time

TRVO
SOTA

Legend

Risk-Averse Trust Region Optimization for Reward-Volatility Reduction, IJCAI 2020
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Experimental Results (1/2)
Hedging a call option, single scenario

64

Characteristics
• Objective: 𝐽 − 𝜆𝜈-

• Simulated market
• Hedge a vanilla call option with a 

TTM of 60 days
• We are considering transaction 

costs

Plot of policy

Option Hedging with Risk Averse Reinforcement Learning, ICAIF 2020
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Experimental Results (2/2)
Hedging a call option, average results

65

Pareto frontier
Characteristics
• Simulated market
• Hedge a vanilla call option with a 

TTM of 60 days
• Δ𝑝&𝑙 is the difference between the 

return of the strategy and that of the 
delta hedge

• 𝜎 is the 𝑝&𝑙 volatility

Option Hedging with Risk Averse Reinforcement Learning, ICAIF 2020
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