

Reinforcement Learning in the Capital Markets

Edoardo Vittori

King's College London 10 March 2023

AGENDA

SOF DO

Introduction to Banks

- Introduction
- Capital Markets
- Wealth Management
- Order Execution

Algorithms in the Financial **Markets**

- Introduction
- Reinforcement Learning
- Use cases

1

Profit Centres of Banks ²

Introduction – Main services offered by banks and their technological focus

Focus next

Capital Markets ³

CIB | Capital Markets

Scope

Technological
focus

Corporate Derivatives Business

- Origination of derivatives for corporates.
- Collaboration between sales, structuring, market making, XVAs and Financial Engineering

- Auto hedging
- Analysing financial statements and transactions to forecast needs

Market Making: Offering liquidity to the markets

CIB | Capital Markets

Regulated market example Dealer market example - OTC

RFQ Example

Client buys protection 200mln Price:

Send

4

Corporate Derivatives: Swap components

CIB | Capital Markets

Edoardo Vittori

XVA's: Valuation adjustments (1/2)

CIB | Capital Markets

Profit Centres of Banks ⁷

Introduction – Main services offered by banks and their technological focus

Edoardo Vittori

Portfolio Optimization

Wealth Management

Definition

• Given an investment universe of M assets, the objective is to decide what proportion of the total available budget to invest in each of the M assets

Background

- **Modern Portfolio Optimization** [Markowitz, 1952]
	- Calculate variance and correlations
	- Single period
- **Intertemporal CAPM** [Merton, 1969]
	- Make assumptions on asset dynamics
	- Multi period
- **Online Portfolio Optimization**
	- [Cover and Ordentlich, 1996]
		- Adversarial market
	- Multi period

Optimal Execution

Order Execution

Description

- In prop trading, the trader decides his strategy and also executes the trades
- In asset management, the portfolio manager decides the portfolio allocation, and the execution is done by an execution desk
- When the execution desk receives an order of size X, the objective is to execute in a specified amount of time, by minimizing the difference between the arrival price and the execution price

Limit order book example

Smart Order Routing

Order Execution

• Smart Order Routing (SOR): optimally splitting an order over multiple venues.

AGENDA

SOR юť

Introduction to Banks

- Introduction
- Capital Markets
- Wealth Management
- Order Execution

Algorithms in the Financial Markets

- Introduction
- Reinforcement Learning
- Use cases

Algorithms in the Financial Markets

- **Algorithmic Trading**
- Reinforcement Learning
- Quantitative Trading
- Online Portfolio Optimization
- Optimal Execution
- Smart Routing with CMABs
- Market Making with MFGs
- Hedging with Risk Averse RL

Algorithmic Trading

Market and types of trading algorithms

Share of algorithmic trading market by asset class

As of 2017 Source: Goldman Sachs, Aite Group

Main types of algorithms

- Optimal execution and smart routing
- Market making
- Hedging
- Trading
- Portfolio optimization

Algorithmic Trading Technologies

Classification by technology type

Reinforcement Learning for Trading

Training, testing and use in production

Supervised learning for Quantitative Trading

Trading system architecture using a supervised learning approach

Algorithms in the Financial Markets

- Algorithmic Trading
- **Reinforcement Learning**
- Quantitative Trading
- Online Portfolio Optimization
- Optimal Execution
- Smart Routing with CMABs
- Market Making with MFGs
- Hedging with Risk Averse RL

Reinforcement Learning Basics

Markov Decision Process: process which describes interaction between agent and environment

• The objective is finding the policy π which maximizes the discounted sum of the rewards

•
$$
J = \max_{\pi} \mathbb{E}_t[\sum \gamma^t R_t]
$$

Q-function and Policy

RL algorithms enable the learning of the policy π

The objective is to find the π that maximises $J : J = \max \mathbb{E}_{\pi}[\sum \gamma^t R_t]$

Q-learning

• Q-function

 $Q_{\pi} = \mathbb{E}_{\pi} [\sum_{\ell} t^{t} R_{t} | s_{0}, a_{0}]$

Bellman Equation

 $Q_{\pi} = r(s, a) + \gamma \mathbb{E}_{s', a'}[Q_{\pi}(s', a')]$

• Q-learning algorithm

 $Q_t(s, a) = r(s, a) + \gamma \max_{a'} Q_t(s', a')$

• Q-learning is a tabular algorithm which can be generalized using function approximators such as Xgboost.

Policy Search

• Policy gradient theorem

 $\nabla_{\theta} J_{\pi_{\theta}} = \mathbb{E} [\nabla \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(s, a)]$

Policy update

 $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J_{\pi_{\theta}}$

The policy is a parametric and differentiable function, usually a neural network

Multi Armed Bandits (MAB)

Partial feedback algorithms – stochastic environments

Characteristics

- Field of research close to RL
- Objective is to learn sequential decision processes
- Online algorithms
- MAB algorithms choose at each timestep which arm to pull
- Regret guarantees: finding the best arm in sub-linear time

• Regret:
$$
R_T = \sum_{t=1}^T \left[f_t(a_t, y_t) - f_t(a^*, y_t) \right]
$$

a^{*} is the best arm

Expert Learning

Full feedback algorithms – adversarial environments

Characteristics

- Field of research close to RL
- Objective is to learn sequential decision processes
- Online algorithms
- Expert learning algorithms choose at each timestep which experts to follow
- Regret guarantees: finding the best expert in sub-linear time

• **Regret**
$$
R_T = \sum_{t=1}^T f_t(a_t, y_t) - \inf_{e \in \mathcal{E}} \sum_{t=1}^T f_t(a_{e,t}, y_t).
$$

Expert interaction scheme

Algorithms in the Financial Markets

- Algorithmic Trading
- Reinforcement Learning
- **Quantitative Trading**
- Online Portfolio Optimization
- Optimal Execution
- Smart Routing with CMABs
- Market Making with MFGs
- Hedging with Risk Averse RL

Reinforcement Learning for Quantitative Trading

Problem description and MDP definition

Quantitative Trading

Definition

• At each timestep, decide whether to go long, short or flat to maximize gains

MDP

- **State:** price window, bid-ask spread, current portfolio, date/time
- **Action:** long, short, flat
- **Reward:** P&L transaction costs

Characteristics

- Alpha seeking
- Low market correlation

Reinforcement Learning for FX Trading (1/2)

Experimental results - performance

Experiment

- Intraday trading on EURUSD FX
- Training with FQI on historical data 2017-2018
- Validation on historical data 2019
- Backtesting on historical data outof-sample 2020

P&L of backtest EURUSD FX trading on 2020

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021

Reinforcement Learning for FX Trading (2/2)

Experimental results - policy

Experiment

- Intraday trading on EURUSD FX
- Training with FQI on historical data 2017-2018
- Validation on historical data 2019
- Backtesting on historical data outof-sample 2020

Can we improve?

Actions chosen by agent

• Market non-stationarity **Learning FX Trading Strategies with FQI and Persistent Actions**, ICAIF 2021

Reinforcement ed Expert Learning per FX Trading

Expert Learning on FX trading

Description

- = trading strategies
- = expert learning strategies

Expert interaction scheme

P&L of backtest on 2021

Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts, ICAIF 2022

Reinforcement and Expert Learning for FX Trading

Example using Expert Learning on FX trading

8% 6% **Cumulated % P&L** Cumulated % P&L 4% 2% 0% -2% -4% -6% **11/2021** 12/2021 01/2021 12/2021 **14/2021** 1021 10/2021 - 10/2021

P&L of backtest of expert strategies on 2021

Weight assigned to each expert

Algorithms in the Financial Markets

- Algorithmic Trading
- Reinforcement Learning
- Quantitative Trading
- **4 Online Portfolio Optimization**
- Optimal Execution
- Smart Routing with CMABs
- Market Making with MFGs
- Hedging with Risk Averse RL

Online Portfolio Optimization

From Expert Learning to Online Portfolio Optimization (OPO)

Definitions and notation

- $a_t \in \Delta_{M-1}$ is the portfolio allocation, with M assets
- The experts are Constant Rebalancing Portfolios (CRPs)
- $a^* = \operatorname{argmin}_{a \in \Delta_{M-1}} \sum_t f_t(a, y_t)$ is the best CRP
- $f_t(a, y_t) = -\log \langle a, y_t \rangle$ is the loss
- $y_t = \left(\frac{p_{t,1}}{p_{t-1,1}}, \ldots, \frac{p_{t,M}}{p_{t-1,M}}\right)$ are the price relatives
- $W_T(a_1, ..., a_T) = \Pi_t^T < a_t, y_t > \text{is the wealth}$

• **Regret**
$$
R_T = \sum_{t=1}^T f_t(a_t, y_t) - \min_{a \in \Delta_{M-1}} \sum_{t=1}^T f_t(a, y_t)
$$

OPO interaction scheme

Universal Portfolios (UP)

The first algorithm in the OPO field

Algorithm 3 Universal Portfolios [Cover and Ordentlich, 1996]

- 1: Input M assets, set $\mathbf{a}_1 \leftarrow \frac{1}{M} \mathbf{1}$, initialize \mathbf{W}_1
- 2: for $t \in \{1, ..., T\}$ do

Select $a_{t+1} \leftarrow \frac{\int_{b \in \Delta_{M-1}} b W_t(b) d\mu(b)}{\int_{b \in \Delta_{M-1}} W_t(b) d\mu(b)}$ $3:$

- Observe y_{t+1} from the market 4:
- Get wealth increase $\langle y_{t+1}, a_{t+1} \rangle$ $5:$
- $6:$ end for

- Regret $O(M \log T)$
- Computational Complexity $\Theta(T^M)$

Online Gradient Descent (OGD)

Moving towards the minimum of the log loss function

Algorithm 4 Online Gradient Descent [Zinkevich, 2003]

Require: learning rate sequence $\{\eta_1, \ldots, \eta_T\}$

1: Input M assets, set $a_1 \leftarrow \frac{1}{M}$ 1

2: for $t \in \{1, ..., T\}$ do

3: Select
$$
\mathbf{a}_{t+1} \leftarrow \Pi_{\Delta_{M-1}} \left(\mathbf{a}_t + \eta_t \frac{\mathbf{y}_t}{\langle \mathbf{y}_t, \mathbf{a}_t \rangle} \right)
$$

- Observe y_{t+1} from the market $4:$
- Get wealth increase $\langle y_{t+1}, a_{t+1} \rangle$ $5:$

 $6:$ end for

- Regret $O(\sqrt{T})$
- Computational Complexity $\Theta(M)$

Online Gradient Descent with Momentum (OGDM)

Keeping transaction costs under control

Algorithm 6 OGDM in OPO with Transaction Costs

Require: learning rate sequence $\{\eta_1,\ldots,\eta_T\}$, momentum parameter sequence $\{\lambda_1,\ldots,\lambda_T\}$ 1: Set $\mathbf{a}_1 \leftarrow \frac{1}{M} \mathbf{1}$ 2: for $t \in \{1, ..., T\}$ do

3: Select
$$
\mathbf{a}_{t+1} \leftarrow \Pi_{\Delta_{M-1}} \left(\mathbf{a}_t + \eta_t \frac{\mathbf{y}_t}{\langle \mathbf{y}_t, \mathbf{a}_t \rangle} - \frac{\lambda_t}{2} (\mathbf{a}_t - \mathbf{a}_{t-1}) \right)
$$

Observe y_{t+1} from the market $4:$

5: Get wealth
$$
log(\langle \mathbf{y}_{t+1}, \mathbf{a}_{t+1} \rangle) - \gamma ||\mathbf{a}_{t+1} - \mathbf{a}_t||_1
$$

 $6:$ end for

- Total Regret $O(\sqrt{T})$
- Computational Complexity $\Theta(M)$

$$
R_T^C = \underbrace{\sum_{t=1}^T f_t(a_t, y_t)}_{R_T: \text{ standard regret}} - \underbrace{\min_{t=1}^T f_t(a, y_t)}_{C_T: \text{ transaction costs}} + \gamma \underbrace{\sum_{t=1}^T ||a_t - a_{t-1}||_1}_{C_T: \text{ transaction costs}}
$$

Edoardo Vittori

Online Newton Step (ONS)

Second order algorithm

Algorithm 5 Online Newton Step [Agarwal et al., 2006]

Require: β , δ 1: Input M assets, set $a_1 \leftarrow \frac{1}{M} \mathbf{1}_M$ 2: for $t \in \{1, ..., T\}$ do Select $\mathbf{a}_{t+1} \leftarrow \prod_{\Delta_{M-1}}^{A_t} (\mathbf{a}_t - \frac{1}{\beta} \mathbf{A}_t^{-1} \mathbf{b}_t)$, where: $3:$ $\mathsf{b}_t = \sum_{\tau=1}^t \nabla[\log_\tau(\mathsf{a}_\tau \cdot \mathsf{y}_\tau)])$
 $\mathsf{A}_t = \sum_{\tau=1}^t \nabla^2[\log(\mathsf{a}_\tau \cdot \mathsf{y}_\tau)] + \mathsf{1}_M$ $\Pi_{\Delta_{M-1}}^{\mathsf{A}_{t}}$ is the projection in the norm induced by A_{t} Observe y_{t+1} from the market 4: Get wealth increase $\langle y_{t+1}, a_{t+1} \rangle$ $5:$ 6: end for

- Regret $O(M \log T)$
- Computational Complexity $\Theta(M^2)$

Algorithm Comparison

OPO experimental examples

ONS performance and weights

Wealth of expert strategies

If we consider market impact? ³⁵

 $\mathbb{R}^n \times \mathbb{R}^n$

- Up to now we considered transaction costs but no market impact.
- What happens if we have market impact?

Algorithms in the Financial Markets

- Algorithmic Trading
- Reinforcement Learning
- Quantitative Trading
- Online Portfolio Optimization
- **Optimal Execution**
- Smart Routing with CMABs
- Market Making with MFGs
- Hedging with Risk Averse RL

Limit Order Book

Definition and limit order book example

Characteristics

- Limit order book is the record of all limit orders which have not been executed
- Limit order is an order which specifies both price and volume of a trade
- Market order is an order to execute immediately at the best price possible

Example of Limit Order Book

Reinforcement Learning for Optimal Execution

Problem definition and MDP description

Optimal Execution

Definition

- Execute X shares in N timesteps
- Decide at each timestep the trade to execute so to minimize difference between arrival and execution price

MDP

- **State:** LOB features, remaining timesteps, remaining quantity
- **Action:** x TWAP with $x \in \{0, 0.2, ..., 4\}$
- **Reward:** distance with arrival price

$$
r_t = \left(1 - \frac{P_{fill} - P_{arr}}{P_{fill}}\right) \lambda \frac{n_t}{X}
$$

Experimental Results

Return comparison between RL agent and benchmark on a market simulated with ABIDES

Characteristics

- Simulating with ABIDES the optimal execution exercise
- 30 minutes to execute 50k shares

• $r_t = \left(1 - \frac{P_{fill} - P_{arr}}{P_{fill}}\right) \lambda \frac{n_t}{X}$

50000 AC $rac{6}{2}$ 40000
 $rac{1}{2}$ 30000
 $rac{1}{2}$ 20000
 $rac{1}{2}$ RL agent **TWAP** 10000 $0 -$ 10 15 20 30 Ω 5 25 Time

Execution trajectories Average RL agent returns vs benchmark

Algorithms in the Financial Markets

- Algorithmic Trading
- Reinforcement Learning
- Quantitative Trading
- Online Portfolio Optimization
- Optimal Execution
- **Smart Routing with CMABs**
- Market Making with MFGs
- Hedging with Risk Averse RL

Smart Order Routing

Order Execution

• Smart Order Routing (SOR): optimally splitting an order over multiple venues.

Regulated Exchanges - Limit Order Book

Dark Pools

The latent limit order book is invisibile to the market participants

Dark Pool Smart Order Routing - DPSOR

Defining SOR as a sequential decision problem

Task

- Create and maintain an **estimate** of **hidden liquidity** of multiple dark pools
- Make optimal joint **routing and pricing decisions**
- Optimize the **dollar volume**

Assumptions

- **Multiple dark pools** for a single asset
- Stationary liquidity
- **Limit orders** are admitted

Formulation

• **Sequential decision problem** where at each round *t*, an agent, given a volume V of shares to execute, must maximize the dollar volume by allocating the shares across K dark pools, specifying the price

⁴⁵ Joint routing and pricing allocation

Defining both the dark pool and the limit price

Price

Problem formalization and notation

Defining constraints and censored feedback

 s_{kn}^t is the actual liquidity present at time t in dark pool k at price p_n

⁴⁷ Censored feedback

Send small orders will keep the actual liquidity hidden

Volume

Uncensored feedback

Combinatorial MAB [Chen et al., 2013]

Solving the DPSOR problem by framing it as a CMAB

• We are in a CMAB setting, where the superarms are all the combinations of A_{kn}^t which satisfy the following
constraint: constraint:

$$
\sum_{k=1}^{K} \sum_{n=1}^{N} A_{kn}^{t} = V
$$

• We want to minimize pseudo-regret w.r.t. the expected dollar value of the optimal superarm r^*

$$
Reg_t(\mathfrak{U}) := t r^* - \sum_{h=1}^t \sum_{k=1}^K \sum_{n=1}^N \mathbb{E}[r_{kn}^h] \mathbb{1} \{A_{nk}^h > 0\} p_n
$$

$$
r_{kn}^t = \min\{A_{kn}^t, s_{kn}^t\}
$$

Estimating liquidity

Count the number of successes and failures of each triplet

Counting successes α and failures β

Using successes and failures to estimate liquidity

DP-CMAB Algorithm – θ **Selection**

Using successes and failures to estimate liquidity

Sample from the Beta distribution

$$
\beta_{knv}^t \sim v \underbrace{\text{Beta}\left(\alpha_{knv}^t, \beta_{knv}^t\right)}_{X_{knv}^t}
$$

Translating liquidity to allocation

Using an optimization oracle and dynamic programming to decide the allocation matrix

DP CMAB High Level Pseudo Code ⁵³

At each round t:

- Calculate the liquidity estimate θ_t using α_t, β_t and the appropriate update CUCB or TS
- Calculate the action matrix $A_t \leftarrow \text{Opt}(\theta_t)$
- Play allocation A_t
- Receive feedbacks r_t from played arms
- Calculate the parameters α_{t+1} and β_{t+1}

Can we do better?

Using domain knowledge to improve learning

Edoardo Vittori

Experimental results – Dollar volume

We want to maximise dollar volume (volume times price)

DP-CTS Full propagation

- Ganchey oracle
- Ganchey random
	- Agarwal oracle
- Agarwal random

Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022

Algorithms in the Financial Markets

- Algorithmic Trading
- Reinforcement Learning
- Quantitative Trading
- Online Portfolio Optimization
- Optimal Execution
- Smart Routing with CMABs
- **Market Making with MFGs**
- Hedging with Risk Averse RL

Dealer Markets

Market structure

Characteristics

- Dealer markets
- Request for quote
- High frequency job

Dealers quotes for a bond

Reinforcement Learning for Market Making

Problem definition and MDP description

Market Making

Definition

• Continuously quote bid and ask prices in order to maximize P&L with minimizing inventory

MDP

- **State:** market information (prices, volumes etc.), current inventory
- Action: bid price, ask price
- **Reward:** spread P&L + inventory P&L inventory penalty

Learning in Mean-Field Games

Learning a competitive strategy

Definitions and notation

- Assume homogeneity/anonymity
- Mean-Field $\mathcal L$ represents players' distrubtion
- π is the policy
- Nash Equilibrium

Experimental Results

Policy and inventory in a simulated environment

Dealer Markets: A Reinforcement Learning Mean Field Game Approach, SSRN 2022

Algorithms in the Financial Markets

- Algorithmic Trading
- Reinforcement Learning
- Quantitative Trading
- Online Portfolio Optimization
- Optimal Execution
- Smart Routing with CMABs
- Market Making with MFGs
- **Hedging with Risk Averse RL**

Reinforcement Learning for Option Hedging

Problem definition and MDP description

Option Hedging

Definition

- Choose, for each timestep, the hedging portfolio so to minimize the price variations caused by the option
- A risk averse objective is necessary

MDP

- **State:** market prices, hedging portfolio, option details
- **Action:** hedging portfolio
- **Reward:** $P\&L_c P\&L_h -$ transaction costs

Risk aversion in RL

Different approaches to risk aversion

Time

Risk-Averse Trust Region Optimization for Reward-Volatility Reduction, IJCAI 2020

Experimental Results (1/2)

Hedging a call option, single scenario

Characteristics

- Objective: $J \lambda v^2$
- Simulated market
- Hedge a vanilla call option with a TTM of 60 days
- We are considering transaction costs

Option Hedging with Risk Averse Reinforcement Learning, ICAIF 2020

Experimental Results (2/2)

Hedging a call option, average results

Characteristics

- Simulated market
- Hedge a vanilla call option with a TTM of 60 days
- $\Delta p \& l$ is the difference between the return of the strategy and that of the delta hedge
- σ is the $p\&l$ volatility

Option Hedging with Risk Averse Reinforcement Learning, ICAIF 2020

Reinforcement Learning in the Capital Markets

Edoardo Vittori edoardo.vittori@intesasanpaolo.com

