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Profit Centres of Banks

Introduction — Main services offered by banks and their technological focus
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Retail Bank

Receive deposits
Offer loans

Difference between loan
interest and deposit interest

Chatbots
Targeted ads for products
Metaverse?

CiB

Investment banking: M&A,
ECM, DCM

Capital markets: sales & trading
Structured finance

Advisory fees
Capital gains + margins
Interest rate

Analysing financial statements
Compiling slides

Automating traders?

Client segmentation

Focus next

Private Banking/Wealth

Management

Mutual funds
Hedge funds
Private equity
Private banking

% fee on AUM + performance
fee

Stock picking
Portfolio optimization
Analysing financial statements



Capital Markets

CIB | Capital Markets
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Market Making

Offering liquidity to the markets
by continuously pricing assets.
It is important to continuously
hedge

Auto pricing
Auto hedging

Prop Trading

Trading with the bank’s capital.

VaR limits. Intraday
investments.

Buy low... sell high!

Returns prediction
Earnings prediction
Trading signals
Analytics

Corporate Derivatives

Business

Origination of derivatives for
corporates.

Collaboration between sales,
structuring, market making,
XVAs and Financial
Engineering

Auto hedging

Analysing financial statements
and transactions to forecast
needs



Market Making: Offering liquidity to the markets

CIB | Capital Markets

Regulated market example Dealer market example - OTC
Last [ LastVol [ Total Vol [ Close [ Daily Low] Daily High T T R
4045.00 2 367267 4097.50  4033.50 4101.50 PCS Firm Name ccp Bid Spd  Ask Spd BSz(MM) ASz(MM)
Implied ICEE ) 50 x 50
| ICEE 5 50 x 50
ICEE 15 15 x 15
Bid Offer ICEE 5 100 x 100
Volume Price | Price Volume ;i )
136 4044.50 4045,00 62 ICEE 55
327 404400 4045.50 293 ICEE 5
348 4043.50 4046.00 427 n:: L]
620 4043.00 4046.50 426
358 4042.50 4047.00 463
330 4042.00 4047.50 348
325 4041.50 4048.00 327
318 4041.00 4048.50 294
305 4040.50 4049.00 281
512 4040.00 4049.50 288

RFQ Example

Client buys protection 200min
Price:

Send



Corporate Derivatives: Swap components
CIB | Capital Markets
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Structuring
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Derivatives sales
(intermediary)

. Collateralized hedge : .
[ Counterparty }7 swap —{ Market making ]7 (market risk) —{ Financial markets ]

‘ Y

Counterparty risk,
funding risk...

[ XVA management I Collateralized hedge




XVA'’s: Valuation adjustments (1/2)

Valuation Description
Adjustment i

CVA Counterparty credit risk. An extra charge given the risk of the counterparty

DVA Own counterparty risk. A discount on the price in exchange for my liability.

Funding cost (or benefit) if the corporate derivative is ITM, then the hedge is

e OTM and | need to pay collateral which must be funded
MVA Cost of financing initial margins
KVA Capital resources required to match regulatory requirements from Basel Il

and SACCR.

CollVA, AVA



Profit Centres of Banks

Introduction — Main services offered by banks and their technological focus

Services

Revenue
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Retail Bank

Receive deposits
Offer loans

Difference between loan
interest and deposit interest

Chatbots
Ads for products
Metaverse?

CiB

Investment banking: M&A,
ECM, DCM

Capital markets: sales & trading
Structured finance

Advisory fees
Capital gains + margins
Interest rate

Analysing financial statements
Compiling slides

Client segmentation
Automating traders?

Private Banking/Wealth

L] L] L] L]

Management

Mutual funds
Hedge funds
Private equity
Private banking

% fee on AUM + performance
fee

Portfolio optimization
Stock picking
Analysing financial statements

Focus next




Portfolio Optimization

Wealth Management

Definition

Given an investment universe of M assets,
the objective is to decide what proportion of
the total available budget to invest in each

of the M assets

Efficient Frontier

Background

Modern Portfolio Optimization
[Markowitz, 1952]

Calculate variance and correlations

Single period

Intertemporal CAPM
[Merton, 1969]

Make assumptions on asset dynamics
Multi period

Online Portfolio Optimization
[Cover and Ordentlich, 1996]

Adversarial market
Multi period



Optimal Execution

Order Execution

Description Limit order book example
® In prop trading, the trader decides his strategy and Last | LastVol | Total Vol | Close | Daily Low | Daily High|
also executes the trades 404500 2 367267 409750 = 4033.50  4101.50
* In asset management, the portfolio manager | ;
decides the portfolio allocation, and the execution = S
is done by an execution desk Volume | Pice |  Pice | Voume |
°* When the execution desk receives an order of size 136 4044.50 4045.00 62
. . . . . 327 4044.00 4045.50 293
X, the objective is to execute in a specified amount 348 4043.50 4046.00 427
of time, by minimizing the difference between the 620 4043.00 4046.50 426
. . . . 358 4042.50 4047.00 463
arrival price and the execution price 20 4042.00 4047 50 248
325 4041.50 4048.00 327
318 4041.00 4048.50 294
305 4040.50 4049.,00 281
512 4040.00 4049,50 268
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Smart Order Routing

Order Execution

Smart Order Routing (SOR): optimally splitting an order over multiple venues.

[ Large order ]—P[

SOR

A

[ Venue 1 ][ Venue 2 ][ Venue 3 ]

[ Venue N ]

10
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§ Algorithms in the Financial Markets

1 Algorithmic Trading

2 Reinforcement Learning

3 Quantitative Trading

4 Online Portfolio Optimization
5 Optimal Execution

6 Smart Routing with CMABs
7 Market Making with MFGs

8 Hedging with Risk Averse RL
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Algorithmic Trading

Market and types of trading algorithms

Share of algorithmic trading market by Main types of algorithms
asset class

* Optimal execution and smart routing

70% 4 Equities The algorithmic
trading market grows
with a CAGR of~11%
('21-'26)

* Market making

Futures

* Hedging
« Trading

20% - » Portfolio optimization

Fixed Income

10% - A/‘_/_‘/._‘

00/0 - T T T T T 1
2004 2006 2008 2010 2012 2014 2016

As of 2017
Source: Goldman Sachs, Aite Group




Algorithmic Trading Technologies
Classification by technology type

Human

Algorithmic

Rule-based

Classic

Quant Finance

Machine
Learning

Supervised
Learning

Reinforcement

Learning

Today'’s focus

+ Human independence

+ Computational Complexity
+ Performance

-



Reinforcement Learning for Trading

Training, testing and use in production

Phase 1

Training

Hyperparameter
tuning

Backtesting

Phase 2

Production

TRPO
PPO
FaQl
Market Learning | Trained
simulator algorithm policy
1 |
e

v

Real time
data

Tralped —> Trade
policy <

Trade

confirmation

15
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Supervised learning for Quantitative Trading

Trading system architecture using a supervised learning approach

Real o Key Points
data v * Necessary to create a
Prediction ) Price labelled dataset

algorithm prediction

® Supervised algorithm
Historical l output is a prediction

data

| Portfolio ® ltis necessary to have
optimizer % Order §’< Market a portfolio optimiser

Risk Current
constraints portfolio

A\ /
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Reinforcement Learning Basics

Markov Decision Process: process which describes interaction between agent and environment

Agent

hoe

Reward State Action
P&L market features portfolio position
penalty internal features trade

Environment

« The objective is finding the policy = which maximizes
the discounted sum of the rewards

© ) = maxE[YyR,]

18



Q-function and Policy

RL algorithms enable the learning of the policy «

The objective is to find the 7 that maximises J : ] = maxE,[Yy*R;]

Q-learning

Q-function

Qr = Ex[Xy"Relso, ao]
Bellman Equation

Qr =7(s,a) + YEy ,/[Qr(s",a")]
Q-learning algorithm

Qc(s,a) = r(s,a) + me,x Q:(s,a")

Q-learning is a tabular algorithm which can be
generalized using function approximators such
as Xgboost.

Policy Search
* Policy gradient theorem

Volry = E[Vlogmg(als)Qr,(s,a)]
* Policy update

Ocr1 =0 +aVg/y,

®* The policy is a parametric and differentiable
function, usually a neural network

19



Multi Armed Bandits (MAB)

Partial feedback algorithms — stochastic environments

Characteristics

* Field of research close to RL

* Obijective is to learn sequential decision processes

® Online algorithms

®* MAB algorithms choose at each timestep which arm to pull
* Regret guarantees: finding the best arm in sub-linear time

T
®* Regret: Rp = Z [ft(at, yt) - ft(a*, yt)]

t=1 a*is the best arm




Expert Learning

Full feedback algorithms — adversarial environments

Characteristics

Field of research close to RL
Obijective is to learn sequential decision processes
Online algorithms

Expert learning algorithms choose at each timestep which experts
to follow

Regret guarantees: finding the best expert in sub-linear time

T T
Regret Rp = th(auyt) - irelngt(ae’t’yt)'
t=1 t=1

Experts

v
>

«Q
[¢)
>
=

21

Expert interaction scheme

fe(ar)

Environment

ag

A
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Reinforcement Learning for Quantitative Trading

Problem description and MDP definition

Quantitative Trading

Definition
Agent

ke

+ At each timestep, decide whether to go long, short
or flat to maximize gains

MDP

+ State: price window, bid-ask spread, current Reward
i i P&L- costs
portfolio, date/time

State
market info.
portfolio

Action
[long, short, flat]

* Action: long, short, flat

* Reward: P&L — transaction costs Environment
Characteristics

* Alpha seeking

* Low market correlation



Reinforcement Learning for FX Trading (1/2)

Experimental results - performance

Experiment

¢ Intraday trading on EURUSD FX

+ Training with FQI on historical data
2017-2018

« Validation on historical data 2019

* Backtesting on historical data out-
of-sample 2020

Cumulated % P&L

24

P&L of backtest EURUSD FX trading on 2020

18%
16%
14%
12%
10%
8%
6%
4%
2%
0%

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021
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Reinforcement Learning for FX Trading (2/2)

Experimental results - policy

Experiment Actions chosen by agent
r Legend ----
¢ Intraday trading on EURUSD FX E = [ong E
1 mm Flat !
- Training with FQI on historical data : Short

2017-2018
« Validation on historical data 2019

* Backtesting on historical data out-
of-sample 2020

° ©
S 9
208

s 8 > 8 s § § 9
Can we improve? & 8 5 2 ¢ 5 %
Time of day

* Market non-stationarity Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021



Reinforcement ed Expert Learning per FX Trading

Expert Learning on FX trading

Description

® ZE222% = trading strategies

° = expert learning
strategies

Expert interaction scheme

FX Experts

A 4

Agent

Environment

4

Cumulated % P&L

P&L of backtest on 2021

8%
6%
4%
2% o Haa
"1'::"1\' i ‘-\—~.: -~ ’= » el =,
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-6%
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I EFIFPFIIITETHHSW

26

Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts, ICAIF 2022



Reinforcement and Expert Learning for FX Trading

Example using Expert Learning on FX trading

P&L of backtest of expert strategies on 2021
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Online Portfolio Optimization
From Expert Learning to Online Portfolio Optimization (OPO)

Definitions and notation OPO interaction scheme
* a; € Ay_, is the portfolio allocation, with M assets

® The experts are Constant Rebalancing Portfolios (CRPs) CRP Experts

° a’ =argminge,,, , Xt fi(a,y.)is the best CRP
* fi(a,y,)=—log<a,y, >is the loss

° y, = ( Poa ., DM ) are the price relatives

A 4

) e
Pt-1,1 Pt-1,M

Agent

° Wr(ay,..,ar) =1f < a, y, > is the wealth

T T
° Regret Rr= th(atayt) - aemAi,;‘ th(a7yt)
t=1 =

A

Environment




Universal Portfolios (UP)
The first algorithm in the OPO field

Algorithm 3 Universal Portfolios [Cover and Ordentlich, 1996]

1: Input M assets, set a1 + %1, initialize Wy
2. forte {1,...,T} do

Joen,,_, bWe(b)du(b)
Joeny_, We(b)du(b)
4. Observe yiyq from the market

5. Get wealth increase (Yit1, at+1)
6: end for

3: Select aiyq <

®* Regret O(MlogT)
® Computational Complexity @(T™)



Online Gradient Descent (OGD)

Moving towards the minimum of the log loss function

Algorithm 4 Online Gradient Descent [Zinkevich, 2003]

Require: learning rate sequence {m,...,nr}
1. Input M assets, set a; < 31
2. forte {1,...,T} do

3: Select di41 < I—IAM—1 (at + e (yty,tat))

4. Observe yi+1 from the market
5. Get wealth increase (Yii1,at41)
end for

o

* Regret 0(vVT)
* Computational Complexity (M)



Online Gradient Descent with Momentum (OGDM)

Keeping transaction costs under control

Algorithm 6 OGDM in OPO with Transaction Costs

Require: learning rate sequence {m,...,nr}, momentum parameter sequence {A1,..., At}
1: Setay « 1
2. forte {1,...,T} do

3: Select aiyq < FIAM_1 (at + Mt <yty’tat> - %ﬁ(at — at_1))

4. Observe yiy1 from the market
5: Get wealth |Og(<yt+1, at+1>) - ’)’||at+1 - at||1

6: end for
T T T
* Total Regret O(vT) R} = th(atayt) - aef“Ai;‘_1 th(a, yi) +v Z |lat — at-ll4
* Computational Complexity ©(M) Z = PN _

Rr: standard regret Cy: transaction costs

Dealing with Transaction Costs in Portfolio Optimization: Online Gradient Descent with Momentum, ICAIF 2020

32



Online Newton Step (ONS)

Second

order algorithm

Algorithm 5 Online Newton Step [Agarwal et al., 2006]

Require: 3,6

1

N

o v

. Input M assets, set a1 < 3 m
:forte {1,...,T} do

Select ar1 « Ny, (ar — 5A; 'by) | where:

be =3, V[iog. (a- - y-)])
A =37 Villog(ar - y-)] + T

=1

H’XM_1 is the projection in the norm induced by A;
Observe yi4+1 from the market
Get wealth increase (Y41, at+1)

end for

Regret O(M logT)
Computational Complexity @(M?)

33
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Algorithm Comparison

OPO experimental examples

ONS performance and weights Wealth of expert strategies

—— ISHARES CORE EURO STOXX 50
——— ISHARES CORE S&P 500

81 —— ISHARES MSCI JAPAN

—— ISHARES NASDAQ 100 USD ACC
—— ISHARES USD TIPS

51 —— WT WTI CRUDE OIL

~—— PORTFOLIO

Wealth

Wealth

1.0 7

0.8 1

0.6

Weights

0.44

0.2 4 0 500 1000 1500 2000 2500 3000

00 Days

0 500 1000 1500 2000 2500 3000

Days



¥ Up to now we considered
transaction costs but no market

impact.

" What happens if we have market
impact?
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Limit Order Book

Definition and limit order book example

Characteristics

Limit order book is the record of all limit
orders which have not been executed

Limit order is an order which specifies both
price and volume of a trade

Market order is an order to execute
immediately at the best price possible

Example of Limit Order Book

Last LastVol | Total Vol | Close | Daily Low | Daily High
4045.00 2 367267  4097.50 = 4033.50 410150
Implied
Bid Offer
Volume |  Price Price | Volume
136 4044.50 4045.00 62
327 4044.00 4045.50 293
348 4043.50 4046.00 427
620 4043.00 4046.50 426
358 4042.50 4047.00 463
330 4042.00 4047.50 348
325 4041.50 4048.00 327
318 4041.00 4048.50 294
305 4040.50 4049.00 261
512 4040.00 4049.50 268

37



Reinforcement Learning for Optimal Execution

Problem definition and MDP description

Optimal Execution
Definition
* Execute X shares in N timesteps

» Decide at each timestep the trade to execute so to
minimize difference between arrival and execution

price
MDP

- State: LOB features, remaining timesteps,
remaining quantity

- Action: x-TWAP with x€{0, 0.2,..., 4}

* Reward: distance with arrival price

Prinn — P, n
Tt=<1_ fill arr>l_t
Prin X

Agent

ke

State

Reward Action
distance with LOB fealures - TWAP
stance w time remaining x
arrival price x €{0,0.2,

quantity remaining

Environment

38
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Experimental Results

Return comparison between RL agent and benchmark on a market simulated with ABIDES

Characteristics

+ Simulating with ABIDES the optimal execution exercise
* 30 minutes to execute 50k shares

Pfitt — P

Pfill X
Execution trajectories Average RL agent returns vs benchmark
10.0
50000 - AC
RL agent 9.9+
40000 -
§ —— TWAP
= 30000- £ 981
>
= ]
o & 9.7-
5 20000 - : *
<
%]
10000 9.6
0

" T T T y y 9.5 T T "
0 5 10 15 20 25 30 RL Agent AC TWAP
Time
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Smart Order Routing

Order Execution

Smart Order Routing (SOR): optimally splitting an order over multiple venues.

[ Large order ]—P[

SOR

A

[ Venue 1 ][ Venue 2 ][ Venue 3 ]

[ Venue N ]

41
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Regulated Exchanges - Limit Order Book

LOB Visualization (404500 2 367267  4097.50 | 4033.50 = 4101.50

Implied
I
Bid Offer
Volume [ Price |  Price | Volume
L 3 136 4044.50 4045.00 62
327 4044.00 4045.50 293
348 4043.50 4046.00 427
620 4043.00 4046.50 426
358 4042.50 4047.00 463
330 4042.00 4047.50 348
325 4041.50 4048.00 327
318 4041.00 4048.50 294
305 4040.50 4049.00 281
S12 4040.00 4049.50 288

Volume

[ Bids | | Asks |

Edoardo Vittori
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Dark Pools

The latent limit order book is invisibile to the market participants

?

Edoardo Vittori



Dark Pool Smart Order Routing - DPSOR

Defining SOR as a sequential decision problem

44

Task

» Create and maintain an
estimate of hidden liquidity
of multiple dark pools

+ Make optimal joint routing
and pricing decisions

» Optimize the dollar volume

Assumptions

» Multiple dark pools for a
single asset

« Stationary liquidity

» Limit orders are admitted

Formulation

» Sequential decision problem where at each
round ¢, an agent, given a volume V of shares
to execute, must maximize the dollar volume
by allocating the shares across K dark pools,
specifying the price

Agent

ey

Dollar
volume

Allocation

Dark Pools




Joint routing and pricing allocation

Defining both the dark pool and the limit price

(W@

LN

©@ ©w

Quantity

~

-

Price

45

V units to sell
Allocate to K dark pools

Specify amount to
allocate at a specific

price



Problem formalization and notation *

Defining constraints and censored feedback

/‘ /' _—> Aj»: amount allocated at round t to dark pool k at price p,

----legend ---

1
1
E U Allocation
1
1

* We have the constraint that

K N
> >, =V

k:l n=1

Quantity A

» Our objective is the allocation that maximizes
dollar volume

K N

/ /{\oo R: (W) =erlt<n Pn. Censored

4 V |4 V RS k=1n=1 \ , feedback
r

A ot
Dark Pool k fn = min{A; s}

S,tm is the actual liquidity present at
time t in dark pool k at price p,



Censored feedback

Send small orders will keep the actual liquidity hidden

r---Legend ---------

Censored feedback
we do not know actual
liquidity

I Actual liquidity s;

1
1
1
1
1
1
1
1
1
Allocation A, X
1
1
1
1
1
1
1
1

I Executed order

Volume

47

Uncensored feedback
we know exact liquidity

Edoardo Vittori



Combinatorial MAB [Chen et al., 2013] N
Solving the DPSOR problem by framing it as a CMAB
----legend ---

X | * We are in a CMAB setting, where the superarms are all
! U Allocation E the combinations of At which satisfy the following

1

! |

/ / constraint:
_____________ |

K N
2.0 A =

k=1 n=1
/ /

<

/ / / / 2
c *  We want to minimize pseudo-regret w.r.t. the expected
g dollar value of the optimal superarm *
@)

t K N
/ 4 Rege (W) =t 7" = ' " SVE[r 11{A" > 0} pa

/-oe’ h=1k=1n=1
/ Q<
4 V V V4 V <<

Dark Pool k rt = min{A!

kn kn’ kn
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Estimating liquidity

Count the number of successes and failures of each ftriplet

Triplet dark pool,
O price, quantity

Let X£,,,, the probability that a specific

. . allocation is successful
. leth
. . letnl

of success

1 1
1 1
1 1
1 1
1 1
1 1
1 1
: Expected probability :
1 1
1 1
1 1
1 1
1 1
1 1
1 1

. .. . We estimate X£,,,, by counting the
. . . /@ number of successes and failures
Q&\
Q&V

Dark Pool k
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Counting successes a and failures 8

Using successes and failures to estimate liquidity
r--' Legend ---------

Success Failure
a—a+l pepf+1

I Actual liquidity s;

1
1
1
1
1
1
1
1
1
Allocation A; X
1
1
1
1
1
1
1
1

I Executed order

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Volume

Edoardo Vittori



DP-CMAB Algorithm — 6 Selection §

Using successes and failures to estimate liquidity

DP-CUCB DP-TS
0.9 - PDF of Beta (Bell-shape)
Beta(2,8) Beta(8,2)
0.8
0711 ) 2.
0.6 ] £
051 ¢ - E
0.4
0.3{-+ .
1 2 3 Low success prob High b
Al P igh success pro
Mean and uncertainty Sample from the Beta distribution
t
¢ Yeno ~ 1 2log(t)
Gknv =0 ol +pt -2 al 4 pt -2 0! ~ o Beta(a! ,Bt
\ kno kno kno kno | kno \ knv’ Fkno |

| |
X Iinv X Ignv



Translating liquidity to allocation

Using an optimization oracle and dynamic programming to decide the allocation matrix

0, = vX, Opt(6,) - A,

Quantity

Quantity

0|07
%4 Q
Dark Pool k

Dark Pool k

52



DP CMAB High Level Pseudo Code

At each round t:

Calculate the liquidity estimate 6, using a;, B; and the
appropriate update CUCB or TS

Calculate the action matrix A; < Opt(6;)
Play allocation A,
Receive feedbacks r; from played arms

Calculate the parameters a;,; and B,

Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022
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Can we do better?

Using domain knowledge to improve learning

Quantity
Propagation O O O
r---legend ---------- I

I
1

' Success :
:

) I

‘ Failure :
:

1

I

1

1

1

. Executed (4%,,)

Volume

O @
O @
©C @
®
o
O

O OO

Full
Propagation

Volume

Price

Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022
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Experimental results — Dollar volume

We want to maximise dollar volume (volume times price)

107 .
La DP-CTS Full propagation
—— (Ganchev oracle
" My N —— Ganchev random
g 1.0 F —— Agarwal oracle
k= —— Agarwal random
o 0.8
>
= 0.6 —
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Dark-Pool Smart Order Routing: a Combinatorial Multi-armed Bandit Approach, ICAIF 2022
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Dealer Markets

Market structure

Dealers quotes for a bond

L PCS Firm Name Bid Px/ Ask Px Bid Yld/Ask Yld BSz..xAS..
Characteristics Total Axe Size @ 205x
e Dealer markets CBBTFIT COMPOSITE 91.844/91.868 1.833/1.830 X
BVALBVAL (Score: 10) 91.624/91.640 | 1.858/1.856 X
* Request for quote Last Trade 91.856 = 7.7

*  High frequency job NOMXNOMURA INTL PLC LDN | 91.848/91.882 | 1.832/1.828 m= 50x10
MZHOMIZUHO INTL 91.8400 / 91.892€ 5x10
IMIG INTESA SANPAOLO TMIG 91795 /91.895 1827 | 10x10

MSEG MORGAN STANLEY LOND | 91.847/91.922 1.823 3x10
BSGB SANTANDER Ex 91.848/91.918 | 1. 8 25x5
HVGOUniCredit Bank AG 91.800/91.919 | 1. 1.8 5x5
DZBKDZ BANK 91.796/91.916 82 5x5
HELA HELABA AUTO EX 91.781/91.930 5x5
DEKA DEKABANK 91.806 / 91.906 ' 2.5x2.5
BPEG BNP PARIBAS EURO G.. = 91.863/91.937 1.830/1.822 2x2
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Reinforcement Learning for Market Making

Problem definition and MDP description

Market Making
Definition

* Continuously quote bid and ask prices in order to
maximize P&L with minimizing inventory

MDP

* State: market information (prices, volumes etc.),
current inventory

* Action: bid price, ask price

* Reward: spread P&L + inventory P&L — inventory
penalty

-inventory penalty

Agent

ke

Reward State
. spread P&L market info. Action
+ inventory P&L 4Bip, dask

inventory

Environment
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Learning in Mean-Field Games

Learning a competitive strategy

\ Fiﬁﬂ

Fi F I/_{er
Definitions and notation e g5 fjﬁi
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* Mean-Field £ represents players’ distrubtion o ij_ﬁ -
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Experimental Results

Policy and inventory in a simulated environment

Policy as a function of inventory
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Inventory RL agent vs benchmarks
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Dealer Markets: A Reinforcement Learning Mean Field Game Approach, SSRN 2022
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Reinforcement Learning for Option Hedging

Problem definition and MDP description

Option Hedging
Definition
* Choose, for each timestep, the hedging portfolio

so to minimize the price variations caused by the
option

* Arisk averse objective is necessary

MDP
* State: market prices, hedging portfolio, option
details

® Action: hedging portfolio
* Reward: P&L; — P&L,, — transaction costs

Agent

ke

State
market info. Action

current portfolio hedging portfolio
derivative char.

Reward
P&L- costs

Environment



Risk aversion in RL

Different approaches to risk aversion
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Reward volatility

ve=(1-7)
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Risk-Averse Trust Region Optimization for Reward-Volatility Reduction, IJCAI 2020




Experimental Results (1/2)

Hedging a call option, single scenario

Characteristics

Objective: | — Av?
Simulated market

Hedge a vanilla call option with a
TTM of 60 days

We are considering transaction
costs

action

Plot of policy

delta hedge

s N2 RS
e =
— = 1

100 150 200
time-step

Option Hedging with Risk Averse Reinforcement Learning, ICAIF 2020
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Experimental Results (2/2)

Hedging a call option, average results

Characteristics

Simulated market

Hedge a vanilla call option with a
TTM of 60 days

Ap&l is the difference between the
return of the strategy and that of the
delta hedge

o is the p&l volatility

Ap&l

0.10

0.20

0.15

0.05

0.00

Pareto frontier

average
——— confidence bounds
delta jhedge —— delta hedge
i T I I
0.2 0.25 0.3 0.35 04

a

Option Hedging with Risk Averse Reinforcement Learning, ICAIF 2020
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