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Abstract

High redshift quasars (HZQs) with z & 6 are extremely rare; they are the

farthest objects which can be detected by current instruments. The high

redshift confines them to the first billion years from the Big Bang and the

study of their emission can reveal secrets about the Universe at a very early

age. However, advanced computational techniques are required to process the

large amounts of modern survey data used for the identification of HZQs.

The purpose of this work is to use machine learning, and specifically artificial

neural networks (NNs), for the search of such rare HZQs.

A toy model was initially set up to compare two neural network classification

tools (Matlab and Skynet) with each other, and against the Bayesian prob-

abilistic method. Following the preliminary assessment, Matlab was chosen;

its customisation required several thousand lines of software code.

The neural network specialisation and optimisation was conducted with the

use of two data sets: one deriving from UKIRT Infrared Deep Sky Survey

(UKIDSS) cross-correlated with the Sloan Digital Sky Survey (SDSS); the

other consisting of simulated HZQs with z & 6.

Every object in the dataset was identified by eight attributes: four measure-

ments coming from different filters, each with its own error. Having as first

priority the avoidance of false negatives - to not lose any HZQs - innovative

computational methods were designed: by averaging or adding the results

of independent NN classification cycles; by complementing the classification

of each object with the probability of being an HZQ; by mapping each ob-

ject from a point-like entity into a Gaussian distribution around the original

value. The stability of the classification results was further enhanced by as-

signing to the data points of the training set a weight inversely proportional

to their error. These methods proved to be capable of identifying correctly

all of the target HZQs (completeness of 100%), with a of 95 to 99% classifi-

cation rate (ratio between selected objects and initial population).

Neural Networks offer a stable, robust, and flexible tool in the search for the

rare HZQs. They represent an ideal platform to quickly and effectively anal-

yse big quantities of data, and will be fundamental in the next generation

astronomical surveys.
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1 INTRODUCTION

1 Introduction

A quasar, or quasi-stellar radio source, is a distant object powered by a

black hole a billion times larger than our sun (see (Rees 1984)). 1. Quasars

were first discovered in 1963 with 3C273 in the constellation Virgo (Schmidt

1963). Since then, they have played a key role in studying black holes, galaxy

evolution, reionization, and cosmology (Peacock 1998). In particular, high

redshift quasars with z & 6 are considered probes capable of revealing the

secrets of the early Universe.

Figure 1: Artist’s rendering of a quasar. Gas and dust form a torus around the

central black hole, with clouds of charged gas above and below.

Credit: NASA/ESA.

Quasars are part of a class of objects known as “active galactic nuclei” since

they require supermassive black holes (SMBHs) to power them. All galaxies

have SMBHs at their centres; active galactic nuclei are the fraction actively

growing. When material gets too close to the black hole it forms an accretion

disk (see Figure 1). Because of the extremely high pressure the matter in the

accretion disk heats up to millions of degrees, blasting out enormous amounts

1Not highlighted hyperlinks available throughout the text, on figures, sections and

references.
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1 INTRODUCTION

of radiation and jets of material which can be detected millions of light-years

away. Quasars are so bright that they can outshine all other sources of light,

including entire surrounding galaxies (Rees 1984), thus making them the fur-

thest objects detectable.

HZQs with z & 6 (hereafter referred to as HZQs) are situated in the epoch

of cosmological reionization which ended a billion years after the Big Bang;

they have helped prove that hydrogen in the early Universe was indeed neu-

tral (Fan et al. 2006).

The most distant HZQ is ULAS J1120+0641. With a redshift of 7.08, it

is found 13 billion light-years from Earth (thus appearing to us as it was

approximately 700 million light-years after the Big Bang)(Mortlock et al.

2011). The closest quasar identified to date is Markarian (Mrk) 231 (1969),

z = 0.04, located 581 million light-years away from earth (there is no quasar

in our galaxy and its central blackhole appears to be quiescent) (Schmidt

1963).

The colours of stars and other astronomical objects differ from quasars, but

the practical problem of photometrically looking for HZQs derives from the

large population amongst which the search needs to be performed - tens of

objects in samples of hundreds of millions. Surveys take images of a vast

region of sky to then automatically identify and process the light sources.

Modern surveys are capable of gathering several terabytes of data on a daily

basis. Data management and its classification thus becomes a real challenge

in astronomy and requires advanced computational techniques.

The Bayesian method used in Mortlock et al. (2012), which calculates the

probability that an object is an HZQ, proved to be very efficient; the most

distant quasar ever discovered was identified using this probabilistic search

technique. The “limitation” of this method is that it is built around the

theoretical distribution of HZQs and it must be tuned for any given survey.

This research effort concentrates on expanding the options by exploring the

cutting edge computational tools of machine learning and specifically of ar-

tificial neural networks. NN methods are not new for quasar searches, but

this is the first known application to HZQs with z & 6.

A number of papers explore the use of NNs for the search of quasars. Start-

ing from “Neural Networks in Astronomy” (Tagliaferri et al. 2003), different

2



1 INTRODUCTION

groups have applied the NN techniques: “Selection of quasars candidates

from combined radio and optical survey using neural networks” (Carballo

et al. 2004); “Photometric identification of quasars from the Sloan Survey”

(Sinha et al. 2006); “Selection of quasar candidates from combined radio and

optical surveys using neural networks” (Carballo et al. 2008); “A photometric

catalogue of quasars and other point sources in the Sloan Digital Sky Survey”

(Abraham et al. 2012), but all of those focus on quasars with a maximum

redshift value of 4. By concentrating instead on quasars with z & 6 there is

a new challenge linked to the small target population of HZQs.

Machine learning techniques, and in particular NNs, are an ideal way to

quickly and effectively analyse big quantities of data and will be necessary

for the coming generation of astronomical surveys, such as the Large Synop-

tic Survey Telescope (Ivezic et al. 2008).

Although optical spectrum will ultimately be required to confirm the quasar

classification, an optimised computational selection of candidates permits the

reduction of telescope time.

3



2 MACHINE LEARNING

2 Machine Learning

There are two main categories of machine learning: unsupervised and super-

vised learning. In unsupervised learning there is no desired output value;

the aim is to extrapolate a function to describe a hidden structure from un-

labelled data. In supervised learning, the goal is to infer a function from a

labelled training set (consisting of training examples which include an input

object and a desired output value) and then apply the function to unlabelled

data (test set). Supervised learning can be further divided into classification

and regression; in classification, the labels have discrete values, while in re-

gression the labels are continuous.

This research focuses on supervised classification problems, as objects in the

universe are a discrete set of data points.

There are several machine learning approaches, some of the most established

are:

• Decision trees

• Neural networks (NNs)

• Case-based reasoning

• Genetic algorithms

These examples can be divided in two major categories: eager learning and

lazy learning. In eager learning, the system creates a general approximation

to the target function during training. As an example, when using the neural

network approach, a network is created during training and then applied to

the new instances. A similar reasoning can be used with decision trees.

However, lazy learning methods (such as case-based reasoning) store the

instances, so that generalising beyond the data is postponed until an explicit

request is made. Lazy learning methods construct a different approximation

to the target function for each encountered query instance. For an in-depth

introduction to machine learning the reader is referred to (Mitchell 1997).

The structured approach of eager learning and in particular NNs has been

considered appropriate for the computational search of HZQs.
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2 MACHINE LEARNING

2.1 Artificial Neural Networks (NNs)

NNs are a family of machine learning models inspired by the brain. They

consist of a group of interconnected nodes, with each one processing the

information it receives and passing it to other neurons through a weighted

connection. The most basic neural network - with one neuron - is called a

Perceptron (see Figure 2). In a perceptron, the inputs form a weighted sum

which, after being passed through an activation function, gives the output

as a boolean variable.

Figure 2: Perceptron -(x1, ..., xn) are the inputs, (w0, ..., wn) are the weights, Σ =

is the neuron which consists of the dot product of the inputs and the weights, σ is

a sign/step function.

Credit: Maja Pantic (2015)

More neurons or even hidden layers between the inputs and the outputs (with

a variable number of neurons in each layer) can be added to approximate

more complex systems. These complex networks are called “multilayer feed

forward neural networks”(“feed forward” means that inputs are sent to the

neuron and are processed into an output - there are no cycles in the network).

Figure 3 shows an example of a network with 3 inputs, 4 outputs, and 3

hidden layers with 5 neurons.

For a broader overview of machine learning see (Mitchell 1997) or (Shiffman

2012).
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2 MACHINE LEARNING

Figure 3: 4-layer feed-forward network. The network presents 3 inputs, 4 outputs,

and 3 hidden layers with 5 neurons in each layer.

Credit Maja Pantic (2015).

2.2 Evaluation and testing of the classification

The next paragraphs will describe the instruments used to assess and com-

pare the performance of classification models. The four tools used are: the

confusion matrix, the ROC curve, the Two-Colour diagram, and the Com-

parison Histogram.

2.2.1 Confusion matrix

A confusion matrix is a table that portrays the performance of an algorithm.

It presents the True Positives (TP) and the True Negatives (TN) on the main

diagonal, and the False Positives (FP) and False Negatives (FN) on the non-

diagonal. Figure 4 shows an example of a confusion matrix with two classes:

the diagonal displays the number of correctly classified examples, and the

non-diagonal portrays the number of incorrectly classified ones.

This can be easily extended to the multi-dimensional case as will be shown

in the toy model in the next section (Figure 9).

Classification Measures There are several types of classification mea-

sures to include: completeness/recall, efficiency/precision and accuracy/clas-

sification rate.

• Completeness/Recall TP
TP+FN

.

• Accuracy/Classification rate TP+TN
TP+TN+FP+FN

.

• Efficiency/Precision TP
TP+FP

.

6



2 MACHINE LEARNING

Figure 4: Confusion matrix. An example on the right with the corresponding

definitions on the left.

Considering HZQs as true positives, the main objective is to maximise com-

pleteness to avoid the loss of potential candidates. The second priority is to

reach the best possible efficiency and classification rate by minimising false

positives. Efficiency is necessarily low because of the rarity of HZQs.

2.2.2 ROC curves

The receiver operating characteristic (ROC) is a metric used to check the

quality of classifiers. The ROC is calculated by applying threshold values

across the interval [0,1]. For each threshold, two values are calculated: the

true positive ratio (the number of outputs greater than or equal to the thresh-

old, divided by TP+FP, as defined in the previous section), and the false

positive ratio (the number of outputs less than the threshold, divided by

TN+FN). The ROC graph is a plot of the false positive ratio vs true positive

ratio for each threshold.

As Figure 5 shows, the closer the line is to the top left edge, the better the

classification for that specific class is ranked (high values of True Positive rate

and low values of False Positive rate). If the line is on the x = y axis, then it

means that approximately 50% of the examples are classified correctly. The

results from the ROC curves and confusion matrices may be slightly different.

The ROC curves depend in fact on the threshold and so the value between 0

7



2 MACHINE LEARNING

Figure 5: ROC curve example.

Credit: Jack Weiss (2010)

and 1 attributed to each class. In the confusion matrix, instead, a “winner”

is assigned to each output value i.e. the one with the highest value. This

difference can be noticed while analysing graphs in the next section on the

toy model; it is therefore important to keep in mind that confusion matrices

and ROC curves are independent methods used to analyse the effectiveness

of the classifier. For a more detailed overview of ROC curves and confusion

matrices see (Fawcett 2006).

2.2.3 Two-Colour diagram

Figure 6: Two-Colour diagram example

The diagram in Figure 6 is used to give a visual evidence of the classifi-
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2 MACHINE LEARNING

cation results: red indicates the objects classified as non-HZQs and blue the

HZQs. A more in-depth astronomical interpretation will be offered in section

3.1.

This type of graph is used in section 6, but not in the toy model.

2.2.4 Comparison Histogram

The Comparison Histogram is a graph created for the scope of this project:to

compare the Bayesian inference calculated in (Mortlock et al. 2012), with the

NN classification.

Figure 7: Comparison Histogram example

Figure 7 is constructed as the superposition of two histograms, the blue and

the orange. Both histograms have on the x-axis (the logarithm of) the prob-

ability that the objects are classified as HZQs, calculated with the Bayesian

inference method. The blue histogram represents the objects which have

been classified by the neural network as non-HZQs; the orange histogram

represents the objects which have been classified by the neural network as

HZQs. The total number of objects classified with the Bayesian probability

is the sum of the blue and orange histogram columns. The brownish colour

represents the superposition of the blue and orange NN classification. The

points with probability zero are those in the last column to the left.

The interpretation of this particular comparison histogram in Figure 7 is that

the majority of the objects classified as HZQs by the neural network coincide

9



2 MACHINE LEARNING

in general with the ones that are assigned a high probability. Instead, just

over ten objects with null probability of being HZQs are classified as HZQs

by the NN.

This type of comparison is used in section 6, but not in the toy model.

2.3 Bayesian inference as a comparison to NNs

Bayesian inference has already been successfully implemented to search for

the rare HZQs with z & 6 in (Mortlock et al. 2012) and this project represents

an alternative to it. The probabilisitic approach is considered in this research

as a reference and a comparison to the results obtained. It is a classification

method based on Bayes’ theorem (equation 1). Prior knowledge is combined

with observed data to determine the final probability of a hypothesis. In a

classification problem, the aim is to find the probability that a set of data

points d are in a specific category or class C: Pr(C|d).

Bayes’ theorem states that:

Pr(C|d) =
Pr(d|C)Pr(C)

Pr(d)
∝ Pr(d|C)Pr(C) (1)

Where Pr(C) is the prior probability, Pr(d|C) the likelihood and Pr(C|d) the

posterior probability. Using proportionality, it is possible to exploit the fact

that
∑

ci∈C Pr(ci|d) = 1 to find the posterior probabilities.

For details on Bayes’ techniques and marginal likelihood, the reader is re-

ferred to an advanced text such as (Carlin & Louis 2000).

Marginal likelihood Given a set of independently and identically dis-

tributed data points x̄ = (x1, ..., xn) where xi ∼ Pr(xi|θ) and θ is a random

variable described by θ ∼ Pr(θ|α) then

Pr(x̄|α) =

∫
θ

Pr(x̄|θ)Pr(θ|α)dθ (2)

is the marginal likelihood of x̄.

2.4 Application to a toy model

The toy classification problem is based on the three-way classification set cre-

ated by Radford Neal, which can be found in Neal (2014) and has been used

10



2 MACHINE LEARNING

with similar purposes in (Graff et al. 2013) section 4.2. The data examples

consist of four random samples from a uniform distribution (x1, x2, x3, x4) on

the unit square. The unit square is divided into 3 parts:

• Class 1: if the Euclidean distance between (x1, x2) and the point (0.4, 0.5)

is less than 0.35.

• Class 2: if 0.8x1 + 1.8x2 < 0.6.

• Class 3: if both conditions are false.

The points: (x3, x4) are not utilised for the classification but are included

simply to be consistent with the toy model and to verify how the model

behaves using these extra parameters. White noise: σ is added to the training

and testing set. The classification is reproduced with different values of σ.

In Figure 8a there is the standard distribution of the data with no noise,

while in Figure 8b there is an example of a test data sample with σ = 0.12.

(a) Data distribution no noise (b) Data distribution, noise (σ = 0.12)

Figure 8: The figures represent the data distribution: 900 points subdivided in the

three classes (blue = class 1, green = class 2, red = class 3).

The same classification is also reproduced with heteroskedastic (i.e. variable)

σ. Most of the classification is done using a training set of 1000 elements

and a test set of 300 elements.

11



2 MACHINE LEARNING

2.4.1 Skynet

Skynet is an efficient and robust neural network training tool which can

train deep networks. The following parameters are suggested from (Graff

et al. 2013):

• 1 hidden layer with 8 neurons.

• Data whitening (normalising of the values) before input.

2.4.2 Matlab Neural Network Toolbox

The Matlab Neural Network Toolbox is a much more general tool that sup-

ports different types of supervised and unsupervised learning. The following

paragraph will describe the optimisation of the parameters available in the

toolbox.

The initial optimisation considered a large variety of different parameters

and techniques:

1. Training function and internal parameters.

2. Number of hidden layers with the respective number of neurons in each

layer.

3. A regularization value.

4. Preprocessing and postprocessing steps.

Training functions. These following training functions were compared:

• trainscg - scaled conjugate gradient backpropagation.

• traingd - gradient descent backpropagation.

• traingda - gradient descent with adaptive learning rate backpropaga-

tion.

• traingdm - gradient descent with momentum backpropagation.

• trainrp - resilient backpropagation.

12
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Some of the training functions have internal parameters that must be op-

timised including: the learning rate, the ratio to increase/decrease learn-

ing rate, the momentum constant, and the increment/decrement to weight

change. The parameters in each training methodology are continuous. To

maximise efficiency, the most typical values which are suggested on (Mitchell

1997) were considered.

Several classifications were run to compare each parameter and choose the

optimal ones. trainscg gave the best classification and so was picked to con-

tinue the analysis.

Hidden layers. Another important parameter to optimise was the number

of hidden layers and the number of neurons in each network. Differently

from other parameters, they tend to give results which differ depending on

the training set. For this reason an algorithm was set up to create several

different combinations of hidden layers and neurons in each layer, and to pick

the optimal one every time a network is trained. The values looped through

were:

• 1 to 5 hidden layers.

• 10, 20 and 30 neurons in each hidden layer.

Following is an example of the Matlab code for a basic classification cycle.

1 %% NN cycle on variable hidden layers

2 for nH = 1:length(nHidden);

3 net = feedforwardnet(nHidden{nH}, 'trainscg');

4 net.performParam.regularization = 0.25;

5 net = configure(net,x2,output);

6 net.trainParam.epochs = 700;

7 [net, tr] = train(net, x2,output);

8 end

Regularization. A regularization with a parameter of 0.25 was introduced

to minimise overfitting and improve the classification.

Preprocessing and postprocessing. Preprocessing and postprocessing

steps (i.e data whitening) were implemented on the inputs and targets.

13
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2.4.3 Bayesian inference

This paragraph contains the analytical calculations to find the probability

that each data point belongs to a specific class:

Pr(C = i|(x̂1, x̂2)), (3)

where i = (1, 2, 3) are the possible classes and x̂1, x̂2 are two random samples

from a uniform distribution with added white noise (x1, x2 are the clean

versions).

By Bayes’ theorem (equation 1):

Pr(C = i|(x̂1, x̂2)) =
Pr((x̂1, x̂2)|C = i)Pr(C = i)

Pr((x̂1, x̂2))
∝ Pr((x̂1, x̂2)|C = i)Pr(C = i)

(4)

To be in category 1, the two-dimensional Euclidean distance between (x1, x2)

and the point (0.4, 0.5) needs to be less than 0.35. This means a total area

of π × 0.352 = 0.3848. Therefore:

Pr(C = 1) = 0.3848451 (5)

To be in category 2, then 0.8x1+1.8x2 < 0.6. It gives an area of 1
8
, but we also

have that the overlap between region 1 and 2: Pr(C = 0∩C = 1) = 0.0072622

which means:

Pr(C = 2) = 0.1250000− 0.0072622 = 0.1177377. (6)

Finally:

Pr(C = 3) = 1− (0.3848451 + 0.1177377) = 0.4974230. (7)

What remains to be calculated is Pr((x̂1, x̂2)|C = k). Using the marginal

likelihood function, equation 2 from section 2.3:

Pr((x̂1, x̂2)|C = k) =

∫
Pr(x̂1, x̂2|x1, x2)(x1, x2|Ck)dx1dx2 (8)

=

∫
Pr(x1, x2|Ck)Pr(x̂1|x1)Pr(x̂2|x2)dx1dx2 (9)
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Knowing that x̂j ∼ N(xj, σ
2) for j = 1, 2 =⇒ (x̂j|xj) ∼ N(xj, σ

2).

Which means:

=

∫
Pr(x1, x2|Ck)

1

σ
√

2π
e−

(x̂1−x1)
2

2∗σ2
1

σ
√

2π
e−

(x̂2−x2)
2

2∗σ2 dx1dx2 (10)

Given a specific class, there is a 100% certainty that the clean data is inside

that class, so what changes are the limits of integration in each class. For

example: Pr(x1obs, x2obs|C1) is 0 if 0.8x1obs + 1.8x2obs < 0.6 and 1 anywhere

else. Following this reasoning we obtain:

Pr((x̂1, x̂2)|C = 1) =

∫
x1,x2∈A

1

σ
√

2π
e−

(x̂1−x1)
2

2∗σ2
1

σ
√

2π
e−

(x̂2−x2)
2

2∗σ2 dx1dx2 (11)

Pr((x̂1, x̂2)|C = 2) =

∫
x1,x2∈B

1

σ
√

2π
e−

(x̂1−x1)
2

2∗σ2
1

σ
√

2π
e−

(x̂2−x2)
2

2∗σ2 dx1dx2 (12)

Pr((x̂1, x̂2)|C = 3) =

∫
x1,x2∈C

1

σ
√

2π
e−

(x̂1−x1)
2

2∗σ2
1

σ
√

2π
e−

(x̂2−x2)
2

2∗σ2 dx1dx2 (13)

Where :

A =
√
x21 + x22 < 0.35

B = 0.8x1 + 1.8x2 < 0.6

C = [0, 1]× [0, 1]− A ∪B

These integrals cannot be solved analytically, so Matlab was used to solve

them numerically for each point in the test set.

2.4.4 The two methods compared against Bayesian inference

The following criteria are used to compare between the three methods:

• Confusion matrices

• ROC curves

• Mislabelled points

The criteria were compared for different values of constant noise (increasing

from 0.02 to 1), as well as for heteroskedastic noise, for different maximum

bounds that the noise could take (increasing from 0.1 to 5). The following

figures and graphs did not give absolute results as each time the classification
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was run, a different training and testing set was generated. Training a net-

work on the same set can generate differences and classification results can

vary even when using the same network. Nevertheless given the randomness

in the creation of the sets all the results were approximately the same.

Constant noise If the value of noise was k, then the “noisy point” x̂i

was generated by:

1. Obtaining a random sample yi from a normal distribution with variance

k: N(0, k).

2. Adding the random value to the data point: x̂i = xi + yi.

Figure 9: Confusion matrices for the three classification methods, data with con-

stant noise: σ = 0.12

The results using a constant noise with σ = 0.02 were that all three meth-

ods performed extremely well with a classification rate of 96.0% for Matlab,
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97.0% with the Bayesian inference method and again 97.0% with Skynet.

The analysis did not give much insight or information on the different clas-

sification systems as the overall outcome was really high. Figures 9, 10 and

11 show the results i.e. the confusion matrices, ROC curves and scatterplots

of the mislabelled points when σ = 0.12.

Figure 10: ROC curves for the three classification methods, data with constant

noise: σ = 0.12.

This time Skynet and the Bayesian inference method with a classification

rate of 81.7% outperformed Matlab which achieved 80.3%.
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The ROC curves (Figure 10) show that class 2 (green) is the best classified

one. While this may not seem consistent with the confusion matrices, the

scatter plots show that very few of the green dots are mislabelled compared

to the others. The first row of the scatter plots (Figure 11) shows the misclas-

sified points and their erroneous classification, while the second row shows

misclassified points in the correct classification. The mislabelled points are

located around the boundaries between the different categories, and the ones

misclassified tend to be the same ones in all three methods. The misclas-

sified points are the ones that were sent outside their class because of the

added noise. These behaviours tend to show themselves more evidently as σ

increases.

Figure 11: Mislabelled data with constant σ = 0.12. The first row has the misclas-

sified points with their incorrect classification while the second row represents the

same misclassified points but labelled with their correct classification. Going from

left to right the points are classified using Matlab, Skynet and Posterior Probability.

A test with σ = 10 resulted in Skynet and Bayesian inference methods send-

ing all the points to category 3. Matlab instead classified in a more diversified

way but all three methods gave a classification rate of approximately 50%.
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Heteroskedastic noise To add heteroskedastic noise to the data, the

following procedure was used for each data point (di):

1. A random sample xi was taken from a uniform distribution on (0, θ).

2. The noise value yi was obtained by sampling from a normal distribution

with variance xi: N(0, xi).

3. The point with noise was defined as d̂i = di + yi.

Figure 12: Confusion matrices, data with heteroskedastic noise: σ ∈ (0, 0.2).

This process was repeated several times, each time with a different parameter

for the random sample from the uniform distribution: θ ∈ (0.1, 5).
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The confusion matrices and ROC curves where the original random sample

was taken from a uniform distribution on (0, 0.2) are shown in Figures 12

and 13.

The results are similar to a constant σ of value 0.12. Skynet seems to per-

form slightly better than Matlab and the Bayesian inference method (they

have accuracies of 83.2%, 82.2% and 81.8% respectively). The ROC curves

instead show better results for the Bayesian inference. When increasing the

upper limit for the noise, the Bayesian inference tends to give better results.

This is to be expected because when calculating the probability, it has prior

knowledge of the noise value.

Figure 13: ROC curves, data with heteroskedastic noise: σ ∈ (0, 0.2)
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2.5 Choice of computational tool

Summarising the results, both machine learning methods work well compared

to the Bayesian inference classification. While it was hard to understand

which one works best when dealing with low values of noise, the Bayesian

method was superior with high values of noise and when it was heteroskedas-

tic.

The best classifier between Matlab and Skynet was also difficult to deter-

mine, in fact they give very similar results. Matlab was the choice because

of its ease of customisation compared to Skynet.
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3 Astronomical data

This chapter gives an overview of the survey, of the HZQ selection process

and of the database available. Then there will a more in-depth description

of the data and its architecture.

3.1 Surveys and HZQ pre-selection process

The search for high redshift quasars is in itself a long process which starts

with the creation of surveys.

The database used derives from the UKIRT (United Kingdom Infrared Tele-

scope), Infrared Deep Sky Survey (UKIDSS), Large Area Survey (LAS)

(Lawrence et al. 2007), cross-correlated with the Sloan Digital Sky Survey

(SDSS) (York et al. 2000). This means that the area covered by LAS was

overlapped with the SDSS survey to create a unique near-infrared catalog

that concentrated the effort on high redshift targets. The cross-matched

area was about 2270 deg2 (5.5% of the total sky that is 41,253 deg2) and

produced 2× 107 catalogued sources.

Figure 14 shows the theoretical distribution of the quasars: the set of lines

starting from the centre of the graph. The farthest line to the right repre-

sents the theoretical distribution of brown dwarfs. The problem is that when

photometric measurements are taken a measurement error displaces the true

value; this is where the additional challenge comes in (see also 3.4).

The dotted line in Figure 14 represents a “preselection cut”. This “cut” is

bounded above by i−Y = 2.80 and is bounded on the right by Y −J = 0.88.

The objective of the top bound is to eliminate all quasars with z . 6 while

the right bound tries to separate brown dwarfs from HZQs. i, Y and J will

be better explained in the following section.

Once the “preselection cut” was applied to the astronomical data, the data

set was reduced to about 30000 objects which was the data set used in this

work.
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Figure 14: Diagram showing the UKIDSS DR8 LAS point sources. They are

quasar candidates as they are found inside the dashed lines which correspond to

the initial pre-selection cuts. The set of lines which start inside the pre-selection

cut represent the theoretical distribution of quasars, while the line tangent to the

right corner of the cut represents the distribution of the brown dwarfs. (The data

used in this report has only the right cut and not the top one - as can be seen in

the plots of section 6; the idea is that the algorithm is capable of doing the rest)

Credit: Mortlock et al. (2012)

Beyond the scope of this paper: once the computational process has been

completed, each candidate is examined visually by the researcher, measured

photometrically and classified again using a second computational search. A

final spectroscopical observation will verify with certainty for the completion

of the process. Previous searches have been done using Bayesian inference as

in Mortlock et al. (2012).
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3.2 Spectral characteristics of HZQs

The spectral characteristics of quasars can be understood by analysing Figure

15. The y-axis is the relative flux and the x-axis is the observed wavelength.

Figure 15: Simulated spectra of quasars compared to the transmission curves of the

SDSS optical filters (u, g, r, i, z) and the UKIDSS near-infrared filters (Y, J,H,K).

The three quasars are at different distances and hence different look-back times,

as labelled. The normalisation is arbitrary, although the decrease in flux level

with distance is realistic. The least distant of these quasars might be seen in SDSS

images (specifically the z band), but the most distant would not. All three simulated

quasars would be visible in appropriately deep UKIDSS exposures.

Credit: (Mortlock 2014)

What is unique to the spectrum of a high redshift quasar is that it has a

distinct break. In Figure 15, short wavelengths correspond to “recent time”:

moving towards the right is like going back in time. Looking at the three

spectra, the one with the break around 0.9 is the most “recent”, and the

labels show to what year they correspond to. It is interesting to understand

why these spectra contain a break: initially in the Universe, hydrogen atoms

were neutral and thus absorbed the light at low wavelengths emitted by the

quasars (and other luminous objects). Around 1 billion years after the Big

Bang (which corresponds to 1.0 Gyr in this case) hydrogen was completely

ionised and so the emitted light stopped being absorbed. The rest-frame (i.e.

the distortion due to redshift) of the break is 0.1216µm, the wavelength of

24



3 ASTRONOMICAL DATA

all light is increased by cosmological expansion; the relationship is: λobs =

(1 + z)λrest where λ is the wavelength. The Universe is seven times larger

now than when when it was one billion years old, and so the breaks in

the spectra of these quasars are seen at an observed-frame wavelength of

∼ 7 × 0.1216µm ' 0.85µm. The breaks are expected to go from the i filter

up to the filter J (Hewett et al. 2006).

3.3 Data sets

Two main data sets were used, one with astronomical data (also referred to as

candidates set, real objects set, test set - it contains 30000 data points) and

the other with simulated high redshift quasars (also referred to as simulated

quasars set - contains 9000 data points). The cross-correlated astronomical

object data set included values from the SDSS survey cross-correlated with

the UKIDSS survey as explained above. The simulated HZQs were necessary

in order to have a sufficient number of objects to perform the necessary

training.

Simulated z & 6 HZQ data set Each simulated quasar was generated

by:

1. Drawing a redshift, z, and absolute magnitude M1450 from the best-fit

evolving quasar luminosity function given in (Willott et al. 2010).

2. Drawing a continuum slope, s, and line-strength, l, from the empirical

distribution of these properties found by (Hewett & Wild 2010).

3. Using the empirical quasar spectral energy distributions (SEDs) from

(Hewett & Wild 2010) to calculate the fluxes Fi, Fz, FY and FJ that

this quasar would have in the SDSS i and z filters and the UKIDSS Y

and J filters.

4. Choosing a location on the sky within the areas covered by the SDSS

and UKIDSS surveys to obtain a value for the noise σi, σz, σY and σJ

in the four bands.

5. Generating measured fluxes in each of the above bands according to

Fb,obs ∼ N(Fb, σb2), where b is i, z, Y or J .
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6. Converting from the measured flux and noise level in flux units to

magnitudes.

3.4 Project data structure

Every data point in both the candidates or simulated quasars data set con-

tained four photometric measures in different filters (i, z, Y, J) each with its

own measurement error as can be seen in Table 1.

i ierr z zerr Y Yerr J Jerr

data point 1 24.34 0.54 18.55 2.61 17.54 0.02 16.96 0.02

data point 2 24.29 1.27 19.22 6.83 18.19 0.04 17.65 0.04

data point 3 24.36 0.58 20.16 0.12 18.63 0.04 18.09 0.05

Table 1: Data structure example

Photometry measurements and error data When obtaining photom-

etry - the value of the flux - from a point source in the sky, the flux is

measured by summing the light received from the object and subtracting the

contribution from the sky background in the same region of the sky. The

simplest technique, known as aperture photometry, consists in summing the

pixel counts within an aperture centred on the object, and subtracting the

product of the nearby average sky count per pixel and the number of pix-

els within the aperture. This gives the raw flux value of the target object.

Unfortunately as with most measurement procedures, there is noise involved

for a variety of factors; for example the night sky is not completely dark

and the detector emits a thermal signal. This “extra” luminosity sums to

the brightness of the sources and makes them seem brighter. The “extra”

brightness is estimated by looking at a pixel with no luminous sources next

to it and then is subtracted from the sources. The estimation is where the

error comes in. This measurement error is present in the data sets next to

the photometric values. For more information on astronomical photometry,

refer to (Budding & Demircan 2007).
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4 NN classification algorithm

The NN classification algorithm code was designed on the following priorities:

1. Avoid false negatives thus maximising the completeness.

2. Minimise false positives thus maximising the efficiency.

Completeness and efficiency are defined in section 2.2.1. The Matlab Neural

Network Toolbox needed customisation and this required several thousand

lines of software code.

Training set The first step in using a neural network for a classification

problem was defining a training set. The training set was forcibly defined

as a mixture of both positive (high red shift quasars) and negative data

examples (non-high red shift quasars) which means combinig a subset of the

simulated quasars with a subset of the real observations. The data set with

real astronomical objects (also referred to as candidates set) coincided with

the test set.

Optimal training sets depended on the balance between the number of data

points from the candidates file and the simulated quasars.

The approach followed was:

1. To keep the candidates set size fixed while varying the simulated quasars

set size (starting from the complete set, to a minimum of 200).

2. To keep the simulated quasars set size fixed while the candidates set

varied (from a maximum of 10000 to a minimum of 200).

Even though the size was kept constant, every time a network was trained,

the test set was different and always picked randomly to keep the results as

generalised as possible.

After several tests, the general guideline discovered was that the best results

were obtained when the two subsets were of a similar size and about 1000

examples.

Keeping this configuration as a base and then increasing the amount of ex-

amples from the candidates and decreasing the number of simulated quasars
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improved the efficiency.

The optimal balance for the training set was found to be with approximately

2000 candidates and 1000 simulated quasars.

Data artefacts category - unsuccessful attempt In the candidates

file data set there were actually three different classes; the main ones were

HZQs and non-HZQs. The non-HZQs however could be further subdivided

into “good/real” astronomical objects and data artefacts. Unfortunately, the

problem with introducing such a third category was that the objects known

to be data artefacts were only 682, a small proportion of a potentially much

bigger population that did not permit any valuable statistic.

4.1 NN algorithm code level 1

The following parameters were chosen from the ones available in Matlab (for

the list of available choices see section 2.4.2):

• The training function trainscg.

• Variable hidden layers - see below (already described in section 2.4.2

but briefly summarised below).

• Regularization values between 0.25 and 0.28.

• Use of preprocessing and postprocessing steps.

Variable hidden layer algorithm code. A customised code (see the code

listing), enabled to obtain flexible neural networks adapting to the specificity

of the individual training sets. The customisable architecture consisted of:

• 1 to 5 hidden layers.

• 10, 20 and 30 neurons in each hidden layer.

Following is an example of the Matlab code for a basic classification cycle.
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1 %% NN creation cycle on variable hidden layers

2 for nH = 1:length(nHidden);

3 net = feedforwardnet(nHidden{nH}, 'trainscg');

4 net.performParam.regularization = 0.27;

5 net = configure(net,x2,output);

6 net.trainParam.epochs = 700;

7 [net, tr] = train(net, x2,output,{},{},EW);
8 end

4.2 NN algorithm code level 2 - AV and IC

When classifying, the priority was to protect completeness i.e. to avoid false

negatives (FN).

The classification as a result of an NN cycle depended on a variety of factors:

• The training set used.

• The size of the training set.

• The balance between candidates and simulated quasars.

• The parameters.

Even the same network may give slightly different classification results even

if completeness remains consistent.

Running the classification while increasing the ratio candidates/simulated

HZQs showed that eventually the completeness (our first priority) was com-

promised. A range was found for which, when repeating independent cycles,

mixed results were obtained. Beyond this range, an unrecoverable drop-off

was been recorded. The solution therefore was to design a repetition of inde-

pendent NN cycles with a specific ratio so that stability was obtained either

by averaging the results of each cycle or by the union of the resulting HZQs

in the individual classification cycle sets. The two methods Average (AV)

and InClusion (IC) are described below.

Notice that the optimised parameters presented were not an exact figure but

a range which is as restrictive as possible; changing slightly the parameters

changes slightly also the results.
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4.2.1 Average (AV) method

Summarising the AV algorithm code, the logic was to:

1. Create multiple training sets with real objects and simulated quasars

of comparable size, for example 2000 candidates and 1500 simulated

quasars.

2. Train a different network for each of the different training sets.

3. Classify the candidates file using each network.

4. Create a final classification which is the average of the network outputs.

For a discussion on the results see section 6

4.2.2 InClusion (IC) method

Summarising the IC algorithm code, the logic was to:

1. Create multiple training sets with real objects and simulated quasars

of comparable size. For example 18 training sets with about 2000 can-

didates and 800 simulated quasars.

2. Train a different network for each of the different training sets.

3. Classify the candidates file using each network.

4. Create a final classification which included all the objects classified as

HZQs from the different networks.

This method, since it identified as HZQ each object classified as such, ensured

a 100% completeness but a lower efficiency than the AV method. For a

discussion on the results see section 6
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4.3 NN algorithm code level 3 - EP

A superiority of the Bayesian method compared to NNs is that an actual

probability is calculated for each object. So far the NN classification effort

offered only a black and white answer; a probability was obtained by an

additional augmentation of the code. The Empirical probability (EP) method

algorithm logic was to:

1. Create a large number of training sets with real objects and simulated

quasars of comparable size. For example 150 training sets with about

2000 candidates and 900 simulated quasars.

2. Train a different network for each of the different training sets.

3. Classify the candidates file using each network.

4. Count the number of times each object was classified as HZQ and divide

by the total number of networks.

The final result was then similar to a probability; the objects considered as

HZQs were those with a probability greater than 0.5. The code listing is an

example of the design of the core of the EP algorithm.

1 num1 = length(candidates);

2 num2 = length(bnets);

3 results = cell(2,num2);

4 sumthis = cell(1,num2);

5 sum = zeros(1,num1);

6 for loop = 1:num2

7 bneti = bnets{loop};
8 results{loop} = bneti(candidates');

9 sumthis{loop} = results{loop}(2,:)>results{loop}(1,:);
10 sum = sum + sumthis{loop};
11 end

12 probability1 = sum/num2;

13 A schematic was prepared to summarise the correlation ...

between the algorithm code and its

14 relevant functionalities.
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NN classification algorithm block diagram. A schematic diagram

(Figure 16) was prepared to summarise the correlation between the algorithm

code and its relevant functionalities.

Figure 16: In the middle of the diagram is the core of the calculation, which the

training and classification phases. To the left are the inputs (Astronomical data

set, simulated data set, training set). To the right are the outputs as classified

results (AV, IC and EP).
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5 NN classification algorithm enhancements

Up to now, the training of the neural network and the classification of the

candidates has been done using the four photometric measurements of each

object. Other information present in the data set (i.e. measurement error)

was not taken into account. However, it was possible to use the additional

valuable information in several instances: during training, during classifica-

tion or in any combination of the two.

The following sections briefly describe the usage of the error data as extra

inputs. At first, the measurement error was used during the training phase;

then, by means of a new transformation method denominated 2D-mapping,

the measurement error was used to make the point-like source into a Gaus-

sian distribution.

To the best of the author’s knowledge, there is no established research which

includes the measurement errors into the classification process.

5.1 Modifying the training algorithm

There are different ways to train a neural network function, and the choice of

the optimal one is fundamental. As mentioned in 2.4.2, with the toy problem

the following training functions have been tested: trainscg, traingd, traingda,

traingdm and trainrp. trainscg was selected as it gave the best results.

The gradient descent training method traingd resurfaced though while study-

ing the articles (Czarnecki & Podolak 2013) and (Reed et al. 1992).

The paper (Czarnecki & Podolak 2013) introduces a very interesting way of

using noise during training. While this method was not implemented, it was

still taken into consideration, and studied at length; it has given inspiration

for the design that follows.

5.2 Upgrading the training phase with weighted inputs

One of the basic ideas behind the training is that the network weights are

constantly modified by each example during training. Examples based on

data with high measurement error are highly uncertain and should not be
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taken into consideration as much as the others. This intuitive reasoning was

the basis of the method implemented. The first experiment was performed

through the use of a variable learning rate, described in the backpropaga-

tion appendix A. The idea was to define a high learning rate corresponding

to small measurement error and a low learning rate corresponding to a high

measurement error; unfortunately the learning rate was not applicable to the

training function trainscg.

The alternative was to input a different weight for each example during train-

ing. Instead of modifying the learning rate every time, each training example

was assigned a weight inversely proportional to the size of the error of each

measurement; more specifically a sigmoid function sent low errors to a weight

close to 1 and high errors to a weight close to 0. This last upgrade was ac-

tually implemented.

As there were four measurements for each object, the average of was used

and converted to a weight. The optimised coefficients of the sigmoid function

were found after several trials.

While this technique did not drastically improve the classification results it

greatly improved the stability of the classification and the likelihood that the

HZQs were correctly classified.

Error data as additional input to the training set - unsuccessful

attempt To specialise the NNs the error data described in 3.4 was included,

making it a total of 8 inputs: the 4 measurements previously used, plus

their corresponding 4 errors. Unfortunately this caused the networks to get

confused and consistently label one of the HZQs as a non-HZQ; also the ROC

curves revealed to be a lot worse than before. Overall, adding the error as

input was unsuccessful.

5.3 2D-mapping (2D) method

The astronomical data set is a collection of point-like objects. If the measure-

ment value of each object is considered as the mean of a Gaussian distribu-

tion, and the corresponding measurement error as the variance, the point-like

source is converted into a Gaussian distribution. This mapping provided an
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increase of the “relevance” of the candidate HZQs during the classification

phase: a false target would be further penalised while a real HZQ would

increase its chances of being focused. This method, named 2D-mapping,

proved to be the most promising, and it was implemented by:

1. Creating multiple training sets with real objects and simulated quasars

of comparable size. For example 10 training sets with about 2000 can-

didates and 1500 simulated quasars.

2. Training a different network for each of the different training sets.

3. Generating for each point in the test set 50 other points, by sampling

from a normal distribution with his original point as the mean and

measurement error of the original point as the variance.

4. Classifying every point.

5. Taking the average of each of the 50 data points so to reduce to a

classification of the original size.

6. (After repeating this procedure for each of the 10 networks) taking the

average of the ten outputs to create a final classification or picking the

output with the best classification.

A fundamental correction to this method was to limit this “spreading” pro-

cess (step 3) only to examples which had a noise level less than 0.13 (this

was the optimal limit reached after several trials). Results for this method

will also be presented section 6.

This method can be used by itself - with an individual network - or “mixed”

with AV and IC. The results for the mixed methods can be found in appendix

D.
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NN classication algorithm enhancements block diagram Figure 17

is a diagram representing a schematic setup of the algorithm enhancements

using error data.

Figure 17: The enhancements are depicted in colour (pink). The error data offers

very valuable information. It was used both to weigh the input data before the

training (in order to emphasise the importance of the training with low error) and

to convert from a point-like object into a 2D Gaussian distribution distribution

(thus maximising the chances of having the correct focus on any HZQ).

Future improvements Possible computational designs to include mea-

surement error are found in Appendix A.
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6 Results

The four main methods implemented were: the average (AV), the inclusion

(IC), the 2D-mapping (2D), and the empirical probability (EP).

The weighted training examples discussed in section 5.2 were also used. For

additional verification of the robustness of the classification, a random sub-

set of the simulated quasars data was added to the candidates file during

classification; these results are presented below as well.

As mentioned for the toy example, all the following figures and graphs do not

give absolute results since a different training set and test set is generated

each time the classification is run. Training a network on the same set can

generate differences. Classification results can differ (even if very slightly)

also when using the same network and the same test data. Even though op-

timal parameters differed for each method, the same were used for a better

comparison. The parameters are as following:

• Regularization of 0.27.

• 700 simulated quasars and 2000 candidates in each training set.

• 10 different networks.

Classification results: the completeness was always 100%. The efficiency

and classification rate can be found in the table below.

Method Efficiency Classification rate

2D (0.13) 1.2% 99.2%

Bayesian 0.4% 97.5%

2D (0.9) 0.3% 96.3%

EP 0.3% 96.0%

AV 0.2% 95.9%

IC 0.2% 95.0%

Table 2: Classification results

The Bayesian results in the above table assume candidates with proba-

bility p ≥ 0.1 as HZQs (identifying the 3 HZQs, 744 false positives).
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Appendix B contains results obtained with a different data set with ∼ 9000

objects and 5 HZQs and Appendix C include ∼ 500 simulated quasars added

to the test set.

6.1 AV results

Figure 18: Completeness of 100% and classification rate of 95.9%.

Figure 19: A detailed explanation of the left figure can be found in section 2.2.3

and of the right figure in section 2.2.4. The majority of the candidate HZQs are

inside the ”preselection cut”.
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6.2 IC results

Figure 20: Completeness of 100% and classification rate of 95%.

Figure 21: A detailed explanation of the left figure can be found in section 2.2.3

and of the right figure in section 2.2.4. The majority of the candidate HZQs are

inside the ”preselection cut”.
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6.3 2D results

Figure 22: 2D method using the best network with limit 0.13. Completeness of

100% and classification rate of 99.2%.

Figure 23: 2D method with limit 0.13. A detailed explanation of the left figure can

be found in section 2.2.3 and of the right figure in section 2.2.4. The two colour

plot on the right emphasises how few candidate HZQs result from the classification

compared to the total population.
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Figure 24: 2D method using the best network with limit 0.9. Completeness of

100% and classification rate of 96.3%. While the classification is still great, it

proves how raising the limit to 0.9 induces many more false positives.

Figure 25: 2D method with limit 0.9. A detailed explanation of the left figure can

be found in section 2.2.3 and of the right figure in section 2.2.4. The two colour

plot on the right emphasises how few candidate HZQs result from the classification

compared to the total population.
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6.4 EP results

Figure 26: Parameters: regularization of 0.27, 700 simulated quasars and 2000

candidates in each training set; 150 different training sets. Completeness 100% and

classification rate 96.0%. The 3 HZQs are classified correctly and are assigned a

probability of 0.6400, 0.8600 and 0.9267.

Figure 27: Histogram of the probabilities calculated with the EP method. The

majority of objects are always classified either as HZQs or non-HZQs, this proves

that the different neural networks tend to have fairly consistent classifications.
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6.5 Robustness of neural networks

Other experiments executed to try and improve the classification consisted

in applying transformations to the data.

The first attempt was using “colours”, where a “colour” is defined as the

difference between two measurements made at different wavelengths. The

principle was to emphasize the difference between HZQs and non-HZQs by

relying on the “preselection cut” plot in Figure 14 which has the (i−Y ) and

(Y − J) colours on the axes. The data was converted as (i − Y ), (Y − J),

(z−Y ), and (i− z). The same tests as before were performed using this new

format.

The second idea was to transform the data from magnitudes to fluxes, which

were the original units in which the data was obtained. This was done

through the relationship: m = −2.5 log10(
F
Fref

) where Fref = 3631JY and

1Jansky = 1Jy = 10−26WHz−1m−2 - (Lupton et al. 1999), (Fukugita et al.

1996).

The final result in both cases was that the classification was extremely similar

to the original one, proving that NNs are robust and flexible tools.
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7 Conclusions

NN methods have been implemented in the quest for HZQs with z & 6. Dif-

ferent options have been finalised. Starting from the Matlab Neural Network

Toolbox, iterative computational strategies have been designed, by averag-

ing (AV method) or by inclusion (IC method). The latter was specifically

designed to protected against False Negatives, an unacceptable loss due to

the rarity of the HZQs.

The 2D mapping approach was found to be the most effective. Each candi-

date was converted from a point-like object into a 2D figure through Gaussian

distribution which has the original point as the mean and the measurement

error as the variance. This permitted either better rejection of false targets or

a better focus of real HZQs and resulted into the highest obtainable perfor-

mance. Increasing the number of computational cycles offered the opportu-

nity to complement the classification by creating for each object a probability

of being an HZQ. This was defined the EP method.

A wise usage of the measurement error further enhanced the classification

performance. The training phase was in fact optimised by giving to the input

a weight inversely proportional to its measurement error.

The code architecture meaningful enough to achieve the desired performance

required different levels of iterations. Starting from a single NN cycle (level

1), in order to obtain sufficiently stable classifications on AV, IC and 2D a

minimum of 10 NN cycles were required (level 2). When instead in addition

to the classification an associated probability was pursued, the stability of

the results imposed a minimum of a few hundreds iterations (level 3). Fine

tuning of the parameters was one of the major challenges throughout the

optimisation of the algorithm made possible by the remarkable flexibility of

the neural networks.

The final classification results included completeness of 100% (perfectly pro-

tecting against False Negatives). Classification rate in the range of 95-99%

was excellent, significantly reducing telescope time. The efficiency remained

low due to extremely limited number of the target HZQs.

Overall, the NN performance was excellent and comparable with the Bayesian

inference, offering robustness and additional flexibility. It is recommended
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to consider modifying the NN training algorithm to include the error data.

Neural networks are an ideal way to quickly and effectively analyse big quan-

tities of data and will be necessary for the coming generation of astronomical

surveys, such as the Large Synoptic Survey Telescope (Ivezic et al. 2008).

45



REFERENCES

References

Abraham, S. et al. (2012), ‘A photometric catalogue of quasars and other

point sources in the sloan digital sky survey’, Monthly Notices of the Royal

Astronomical Society 419(1), 80–94.

Budding, E. & Demircan, O. (2007), Introduction to Astronomical Photom-

etry, 2nd edn, Cambridge University Press, Cambridge, New York.

Carballo, R. et al. (2004), ‘Selection of quasar candidates from combined

radio and optical surveys using neural networks’, Monthly Notices of the

Royal Astronomical Society 353(1), 211–220.

Carballo, R. et al. (2008), ‘Use of neural networks for the identification of

new z ≥ 3.6 QSOs from FIRST-SDSS DR5’, Monthly Notices of the Royal

Astronomical Society. 391, 369.

Carlin, B. & Louis, T. (2000), Bayes and Empirical Bayes Methods for Data

Analysis, Second Edition, Chapman & Hall/CRC Texts in Statistical Sci-

ence, Taylor & Francis.

Czarnecki, W. M. & Podolak, I. T. (2013), Machine Learning with Known

Input Data Uncertainty Measure, in ‘Computer Information Systems and

Industrial Management’, r Heidelberg, pp. 379–388.

Fan, X. et al. (2006), ‘Constraining the Evolution of the Ionizing Background

and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19

Quasars’, The Astronomical Journal 132(1), 117.

Fawcett, T. (2006), ‘An Introduction to ROC Analysis’, Pattern Recogn.

Lett. 27(8), 861–874.

Fukugita, M. et al. (1996), ‘The sloan digital sky survey photometric system’,

The Astronomic Journal 111, 1748.

Graff, P. et al. (2013), ‘SKYNET: an efficient and robust neural network

training tool for machine learning in astronomy.’, Monthly Notices of the

Royal Astronomical Society .



REFERENCES

Hewett, P. & Wild, V. (2010), ‘Improved redshifts for SDSS quasar spectra’,

Monthly Notices of the Royal Astronomical Society 405, 2302–2316.

Hewett, P. et al. (2006), ‘The UKIRT Infrared Deep Sky Survey ZY JHK

photometric system: passbands and synthetic colours’, Monthly Notices of

the Royal Astronomical Society 367, 454–468.

Ivezic, Z. et al. (2008), ‘Lsst: from science drivers to reference design and

anticipated data products’.

Lawrence, A. et al. (2007), ‘The UKIRT Infrared Deep Sky Sur-

vey (UKIDSS)’, Monthly Notices of the Royal Astronomical Society

379, 1599–1617.

Lupton, R. et al. (1999), ‘A modified magnitude system that produces well-

behaved magnitudes, colors, and errors even for low signal-to-noise ratio

measurements’, The Astronomic Journal 118, 1406.

Maja Pantic, S. P. (2015), ‘Course 395: Machine learning’. Lecture Notes.

Mitchell, T. M. (1997), Machine Learning, 1st edn, McGraw-Hill, Inc., New

York, NY, USA.

Mortlock, D. (2014), ‘Finding the Most Distant Quasars Using Bayesian

Selection Methods’, Statistical Science 29(1), 50–57.

Mortlock, D. et al. (2011), ‘A luminous quasar at a redshift of z = 7.085’,

Nature 474(7353), 616–619.

Mortlock, D. et al. (2012), ‘Probabilistic selection of high-redshift quasars’,

Monthly Notices of the Royal Astronomical Society 419, 390–410.

Neal, R. (2014), ‘A three-way classification problem’.

URL: http://www.cs.toronto.edu/ radford/fbm.2004-11-10.doc/Ex-netgp-

c.html

Peacock, J. (1998), Cosmological Physics, Cambridge University Press.



REFERENCES

Reed, R. et al. (1992), Regularization using jittered training data, in ‘Neu-

ral Networks, 1992. IJCNN., International Joint Conference on’, Vol. 3,

pp. 147–152.

Rees, M. J. (1984), ‘Black Hole Models for Active Galactic Nuclei’, Annual

Review of Astronomy and Astrophysics 22, 471–506.

Schmidt, M. (1963), ‘3c 273 : A star-like object with large red-shift’, Nature

197, 1040.

Shiffman, D. (2012), The Nature of Code, D. Shiffman.

URL: http://natureofcode.com

Sinha, R. P. et al. (2006), Photometric identification of quasars from the

sloan survey, in ‘Highlights of Astronomy’, Vol. 2 of Proceedings of the

International Astronomical Union, pp. 609–609.

Tagliaferri, R. et al. (2003), ‘Neural networks in astronomy’, Neural Net-

works 16(3-4), 297–319.

Willott, C. J. et al. (2010), ‘The Canada-France High-z Quasar Survey: Nine

New Quasars and the Luminosity Function at Redshift 6’, The Astronom-

ical Journal 139(3), 906 – 918.

York, D. et al. (2000), ‘The Sloan Digital Sky Survey: Technical summary’,

The Astronomical Journal 120(3), 1579–1587.



A CUSTOMISED NN ALGORITHM BY ERROR INCORPORATION

Appendix A. Customised NN algorithm by error incor-

poration

As mentioned in section 5, the paper (Czarnecki & Podolak 2013) introduces

a very interesting way of using noise during training. While this method was

finally not implemented for this research, it was still taken into consideration.

The following paragraph describes the use of the conjugate gradient back-

propagation training to which this method is applied. The basic idea of the

training is also what trainscg - scaled conjugate gradient backpropagation is

based on.

Backpropagation Section 2.1 explains the basic layout of a network: in-

puts, outputs and hidden layers in between, and how each layer is connected

to the other by weights. These weights are what is being optimised during

training.

Specifically in the stochastic backpropagation algorithm:

1. The weights are randomly initialised.

2. The first example is propagated forward through the network.

3. The error (output - target value) is calculated.

4. This error is propagated backwards throughout the network.

5. Each weight is updated depending on how big the error is.

6. This procedure continues until a stopping condition is reached.

Stochastic gradient descent differs from gradient descent as it updates the

weights while iterating one training example at a time, instead gradient de-

scent updates the weights after running all the training examples. Gradient

descent means that it uses the gradient of the error to find where its change

is steepest and then it moves in that direction. Each time a training example

goes through a network, a weight w is updated as: wji ← wji + ∆wji, where

∆wji = −η∇Ed. ∇Ed is the gradient of the error function which for the

stochastic gradient descent algorithm is defined as:

Ed(w) =
1

2

∑
k∈outputs

(tk − ok)2 (14)
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where tk is the target value of unit k and ok is the output value of unit k given

example d. There are two slightly different values of ∆wji which depend on

whether the units being considered are considering are on the output layer

or one of the hidden layers.

For the hidden layers we get that:

∆wji = η(tj − oj)oj(1− oj)xji (15)

where xji is the ith output to unit j.

Instead for the output layers the result is:

∆wji = ηoj(1− oj)
∑

k∈Downstream(j)

∂Ed
∂netk

wkj (16)

Where k ∈ Downstream(j) means all the units which take as input the x

coming from unit j, so all the units in the layer after j. ∂netk is the weighted

sum of inputs for unit k:
∑

iwkjxkj. (Mitchell 1997)

Error in backpropagation The proposal of paper (Czarnecki & Podolak

2013) was to modify the gradient descent backpropagation algorithm by in-

troducing the modified error function:

Ed(w) =
∑

k∈outputs

(tkP (k|x̂d)− ok)2 (17)

where P (k|xd) represents the probability that example x̂d is a noisy exem-

plification of example xd: P [x̂d = xd + n|i ∈ 1, ...,M ].
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Appendix B. Results with new candidates

The results presented in this section use the same networks as section 6 ap-

plied to a new candidates set with 8562 data points and 5 HZQs taken from

the same survey described in section 3.1, but with a different data release.

As a reference point, the Bayesian inference method had recognised 234 ob-

jects as possible HZQs (and correctly classified the 5 HZQs).

Considering the classification rate (completeness is always 100%), the best

classification results are given by:

Method Efficiency Classification rate

Bayesian 0.4% 97.2%

2D (0.6) 0.3% 96.7%

EP 0.3% 96.6%

AV 0.2% 96.4%

IC 0.2% 95.4%

Table 3: Classification results for the new data set
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B.1 AV

Figure 28: Completeness of 100% and classification rate of 96.4%.

Figure 29: A detailed explanation of the left figure can be found in section 2.2.3

and of the right figure in section 2.2.4.
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B.2 IC

Figure 30: Completeness of 100% and classification rate of 95.4%

Figure 31: A detailed explanation of the left figure can be found in section 2.2.3

and of the right figure in section 2.2.4.
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B.3 2D

Figure 32: 2D method using the best network - with limit 0.6. Completeness of

100% and classification rate of 96.7%.

Figure 33: A detailed explanation of the left figure can be found in section 2.2.3

and of the right figure in section 2.2.4.
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B.4 EP

Figure 34: Completeness of 100% and classification rate of 96,6%. Parameters:

regularization of 0.27, 700 simulated quasars and 2000 candidates in each training

set; 150 different training sets.

Figure 35: A detailed explanation of the left figure can be found in section 2.2.3

and of the right figure in section 2.2.4.
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Appendix C. Simulated quasars

The results in this section consist of using the same networks as section 6,

but adding to the test set which is classified 502 simulated quasars chosen

randomly. As a reference point, the Bayesian inference method recognised

295 of the simulated quasars. Ranked in order of highest completeness we

have:

Method Efficiency Classification rate Completeness

IC 24.3% 94.7% 95.0%

AV 27.7% 95.8% 91.9%

EP 29.1 % 95.9% 91.5%

2D(0.9) 29.8% 96.3% 87.7%

Bayesian 40% 96.7% 58.8 %

2D (0.13) 43.6% 98.1% 36.8%

Table 4: Classification results with extra simulated quasars (in order of high-

est completeness).

When adding the simulated quasars, the methods which do not consider the

measurement error are superior as they are able to obtain a higher complete-

ness. It might be necessary to verify how the noise for the simulated quasars

is created.
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C.1 AV

Figure 36: 461 of the 502 simulated quasars are recognised.
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C.2 IC

Figure 37: 475 of the 502 simulated quasars are recognised. This result shows the

true power of this method. Only 27 simulated HZQs were erroneously classified as

non-HZQs (false negatives) compared to the 41 before (and the 207 of the Bayesian

Inference)
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C.3 2D

Figure 38: 2D method with limit 0.13; 183 of the 502 simulated quasars are

recognised.

Figure 39: 2D method with limit 0.9; 440 of the 502 simulated quasars are recog-

nised.
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C.4 EP

Figure 40: 482 of the 527 simulated quasars are recognised.

A12



D MIXED METHODS

Appendix D. Mixed methods

The graphs below are the experiment of mixing various classification methods

together. The training parameters used are the same ones as before:

• Regularization of 0.27.

• 700 simulated quasars and 2000 candidates in each training set.

• 10 different networks.

Figure 41: Confusion matrix and ROC curve for plot of the 2D method mixed with

IC method: the point was first expanded, then classified. All the points classified

as quasars at least once by the different networks were selected. Finally, the extra

points were averaged to reduce them back to one point.
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Figure 42: Confusion matrix and ROC curve for plot of the 2D method mixed

with IC method: this time the 2D method was done first, then the inclusion of all

the HZQs was taken.

Figure 43: Confusion matrix and ROC curve for plot of 2D method mixed with

AV method: the 2D method was done first, then the average of the results was

taken.
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