Augmenting Traders with Learning Machines

Ph.D. Thesis Defense

Edoardo Vittori

- 1. Introduction
- 2. Online Portfolio Optimization with Transaction Costs
- 3. Quantitative Trading with MCTS
- 4. Option Hedging with Risk Averse RL
- 5. Conclusions

1. Introduction

Content Map

Trading as a Markov Decision Process (MDP)

	Reinforcement	Monte Carlo	Expert Learning
	Learning	Tree Search	
Online vs			
offline			
Learning			
approach			
Observation to			
action delay			
Policy type			

	Reinforcement	Monte Carlo	Expert Learning
	Learning	Tree Search	
Online vs	depends on		
offline	algorithm		
Learning	general policy		
approach			
Observation to	small		
action delay			
Policy type	stationary		

	Reinforcement	Monte Carlo	Expert Learning
	Learning	Tree Search	
Online vs	depends on	online	
offline	algorithm		
Learning	general policy	local policy	
approach			
Observation to	small	some	
action delay			
Policy type	stationary	non-stationary	

	Reinforcement	Monte Carlo	Expert Learning
	Learning	Tree Search	
Online vs	depends on	online	online
offline	algorithm		
Learning	general policy	local policy	optimizing for
approach			next action
Observation to	small	some	small
action delay			
Policy type	stationary	non-stationary	adversarial

Financial	Reinforcement	Monte Carlo	Expert Learning
tasks	Learning	Tree Search	
Portfolio			
optimization			
Quantitative			
trading			
Market			
making			
Option			
hedging			
Optimal			
execution			

Application of Algorithms to Financial Tasks in this Research

Financial	Reinforcement	Monte Carlo	Expert Learning
tasks	Learning	Tree Search	
Portfolio			
optimization			
Quantitative	FQI for FX		
trading	trading		
Market	FQI with MFGs for		
making	bond dealing		
Option	Risk averse RL		
hedging	(TRVO) for hedging		
Optimal	FQI and Thompson		
execution	Sampling		

Application of Algorithms to Financial Tasks in this Research

Financial	Reinforcement	Monte Carlo	Expert Learning
tasks	Learning	Tree Search	
Portfolio			
optimization			
Quantitative	FQI for FX	Open Loop UCT for	
trading	trading	FX trading	
Market	FQI with MFGs for		
making	bond dealing		
Option	Risk averse RL		
hedging	(TRVO) for hedging		
Optimal	FQI and Thompson		
execution	Sampling		

Application of Algorithms to Financial Tasks in this Research

Financial	Reinforcement	Monte Carlo	Expert Learning
tasks	Learning	Tree Search	
Portfolio			Online portfolio
optimization			optimization
Quantitative	FQI for FX	Open Loop UCT for	
trading	trading	FX trading	
Market	FQI with MFGs for		
making	bond dealing		
Option	Risk averse RL		
hedging	(TRVO) for hedging		
Optimal	FQI and Thompson		
execution	Sampling		

Financial	Reinforcement	Monte Carlo	Expert Learning
tasks	Learning	Tree Search	
Portfolio			Online portfolio
optimization			optimization
Quantitative	FQI for FX	Open Loop UCT for	
trading	trading	FX trading	
Market	FQI with MFGs for		
making	bond dealing		
Option	Risk averse RL		
hedging	(TRVO) for hedging		
Optimal	FQI and Thompson		
execution	Sampling		

2. Online Portfolio Optimization with Transaction Costs

Defining Expert Learning

Expert Learning

- 1. Agent makes a decision: $\theta_t \in \Theta$, based on suggestions of experts \mathcal{E}
- 2. Environment chooses outcome y_t and loss $f_t(\theta_t, y_t)$
- 3. Update cumulative loss $L_T = \sum_{t=1}^{l} f_t(\theta_t, y_t)$

Objective

- Regret: $R_T = L_T \inf_{e \in \mathcal{E}} \sum_{t=1}^T f_t(\theta_{e,t}, y_t)$
- No regret: $\frac{R_T}{T} \rightarrow 0$

From Expert Learning to Online Portfolio Optimization

Online Portfolio Optimization Setting

- + $\boldsymbol{a}_t \in \boldsymbol{\Delta}_{M-1}$ is the portfolio allocation
- The experts are Constant Rebalancing Portfolios

•
$$\mathbf{a}^* = \operatorname{arg\,inf}_{a \in \Delta_{M-1}} \sum_{t=1}^{T} f_t(\mathbf{a}, \mathbf{y}_t)$$
 is the Best CRP

•
$$f_t(\mathbf{a}, \mathbf{y}_t) = -\log(\langle \mathbf{a}, \mathbf{y}_t \rangle)$$
 is the loss

•
$$\mathbf{y}_t = \left(rac{p_{t,1}}{p_{t-1,1}}, \dots, rac{p_{t,M}}{p_{t-1,M}}
ight)$$
 are the price relatives

Agent \mathbf{a}_t $f_t(\mathbf{a}_t, \mathbf{y}_t)$ Environment $f_t(\mathbf{a}_{e,t}, \mathbf{y}_t)$ $\mathbf{a}_{e,t}$ Experts: CRPs

Limitations: no transaction costs

Approaches to Portfolio Optimization

Background

Modern Portfolio Optimization [Markowitz, 1952]

- Calculate variance and correlations
- Single period

Intertemporal CAPM

[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period

· Online Portfolio Optimization

[Cover and Ordentlich, 1996]

- Adversarial market
- Multi period

Approaches to Portfolio Optimization

Background

- Modern Portfolio Optimization [Markowitz, 1952]
 - Calculate variance and correlations
 - Single period
- Intertemporal CAPM [Merton, 1969]
 - Make assumptions on asset dynamics
 - Multi period
- · Online Portfolio Optimization
 - [Cover and Ordentlich, 1996]
 - Adversarial market
 - Multi period

Main contributions

Dealing with Transaction Costs in Portfolio Optimization: Online Gradient Descent with Momentum [Vittori et al., 2020a]

- Keeping transaction costs under control in OPO
- Definition of a algorithm: OGDM with total regret guarantees

Total Regret: Adding Transaction Costs

 γ is the proportional transaction rate for buying and selling stocks

Algorithm 1 OGDM in OPO with Transaction Costs

Require: learning rate sequence $\{\eta_1, \ldots, \eta_T\}$, momentum parameter sequence $\{\lambda_1, \ldots, \lambda_T\}$ 1: Set $\mathbf{a}_1 \leftarrow \frac{1}{M}\mathbf{1}$ 2: for $t \in \{1, \ldots, T\}$ do

3: Select
$$\mathbf{a}_{t+1} \leftarrow \Pi_{\Delta_{M-1}} \left(\mathbf{a}_t + \eta_t \frac{\mathbf{y}_t}{\langle \mathbf{y}_t, \mathbf{a}_t \rangle} - \frac{\lambda_t}{2} (\mathbf{a}_t - \mathbf{a}_{t-1}) \right)$$

4: Observe \mathbf{y}_{t+1} from the market

5: Get wealth
$$\log(\langle \mathbf{y}_{t+1}, \mathbf{a}_{t+1} \rangle) - \gamma ||\mathbf{a}_{t+1} - \mathbf{a}_t||_1$$

6: end for

Total Regret

$$R_T^C \leq \mathcal{O}(\sqrt{T})$$

Vittori, E., Bernasconi De Luca, M., Trovò, F., and Restelli, M. (2020). Dealing with Transaction Costs in Portfolio Optimization: Online Gradient Descent with Momentum. *ICAIF*.

Comparison with State of the Art in OPO

Online Portfolio Optimization

- Universal Portfolios (U_CP) [Kalai and Vempala, 2002]
- Online Newton Step (ONS) [Agarwal et al., 2006]
- Online Lazy Updates (OLU) [Das et al., 2013]

	Algorithm type			
Metric	OGDM	$U_C P$	OLU	ONS
R _T	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$
R_T^C	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(T)$	-
Complexity	$\Theta(M)$	$\Theta(T^M)$	$\Theta(M)$	$\Theta(M^2)$

Experimental Results: Average APY

Average Annual Percentage Yield $A(W_T)$ computed on the wealth $W_T^C(\mathbf{a}_{1:T}, \mathbf{y}_{1:T})$: $A(W_T) = W_T^{250/T} - 1$

Vittori, E., Bernasconi De Luca, M., Trovò, F., and Restelli, M. (2020). Dealing with Transaction Costs in Portfolio Optimization: Online Gradient Descent with Momentum. *ICAIF*.

3. Quantitative Trading with MCTS

Trading: a sequential decision process in which at each round $t \in \{1, ..., T\}$ over a trading horizon $T \in \mathbb{N}$, a trader decides whether to go long, short or stay flat with respect to an asset to maximize her wealth

MDP Configuration

Approaches to Trading

Background

· Practitioner approach

- Technical analysis
- Macro-economic analysis
- Supervised learning approach [Baba and Kozaki, 1992]
 - Forecast asset prices
 - Derive trade
 - Hard to incorporate market frictions

· Reinforcement Learning approach

[Moody and Saffell, 2001]

- Integrate prediction and action
- Simple to include market frictions

Approaches to Trading

Background

- Practitioner approach
 - Technical analysis
 - Macro-economic analysis
- Supervised learning approach [Baba and Kozaki, 1992]
 - Forecast asset prices
 - Derive trade
 - Hard to incorporate market frictions
- Reinforcement Learning approach [Moody and Saffell, 2001]
 - Integrate prediction and action
 - Simple to include market frictions

Main contributions

Monte Carlo Tree Search for Trading and Hedging [Vittori et al., 2021]

• Use of Open Loop MCTS for single currency FX trading

Monte Carlo Tree Search (MCTS)

Upper Confidence Tree (UCT) [Kocsis and Szepesvári, 2006]

- Selection using UCB₁ $a_n = \arg \max_{i=1..K} \overline{X}_{i,T_i(n-1)} + C_{\sqrt{\frac{2 \log n}{T_i(n-1)}}}$
- · Convergence to the optimal solution in deterministic environments

Planning Tree in Deterministic and Stochastic Environments

UCT in deterministic environments

UCT in continuous stochastic environments

Open Loop UCT [Lecarpentier et al., 2018]

- Nodes are distributions over states
- Open-loop value of action sequence τ :

$$V_{OL}(s,\tau) = \mathbb{E}\left[\sum_{t=1}^{m} \gamma^{t} r_{t} \middle| s_{0} = s, a_{t} \in \tau\right]$$

• Open-loop value of a node $\mathcal{N}_{d,i}$:

$$\mathcal{V}\left(\mathcal{N}_{d,i}
ight) = \mathop{\mathbb{E}}_{\mathbf{s}\sim\mathcal{P}\left(\cdot\mid\mathbf{s}_{0},\tau_{d,i}
ight)}\left[V_{OL}^{*}(\mathbf{s})
ight]$$

where $V^*_{OL}(s) = \max_{\tau \in \mathcal{A}^m} V_{OL}(s, \tau)$

Q-learning Backpropagation

• Standard Backpropation

$$\mathcal{Q}_{t}\left(\mathcal{N}_{d,i},a\right) = \left(1 - \frac{1}{N}\right)\mathcal{Q}_{t}\left(\mathcal{N}_{d,i},a\right) + \frac{1}{N}\left(r_{t} + \gamma \mathcal{V}_{t}\left(\mathcal{N}_{d+1,j}\right)\right)$$

• **Temporal Difference** Backpropagation, based on the Q-Learning update rule [Vodopivec et al., 2017]

$$\mathcal{Q}_{t}\left(\mathcal{N}_{d,i},a\right) = (1-\beta)\mathcal{Q}_{t}\left(\mathcal{N}_{d,i},a\right) + \beta\left(r_{t} + \gamma \max_{a'} \mathcal{Q}_{t}\left(\mathcal{N}_{d+1,j},a'\right)\right)$$

Generative Model

Clustering generative model

- 1. Start from the current price window $w_t = (P_{t-M}, \dots, P_{t-1})$
- 2. Extract window of returns $\delta_t = \frac{P_t P_{t-1}}{P_{t-1}}$, $\boldsymbol{\delta}_t = (\delta_{t-M}, \dots, \delta_{t-1})$
- 3. Find the K nearest neighbors of δ_t in the historical dataset D
- 4. Use the neighbors to project future asset prices

Experimental Results Trading EURUSD FX without Transaction Costs

Annualized average P&L with no transaction costs, as a function of the search budget and the numbers of neighbors. Average over 50 runs, 95% confidence intervals

Vittori, E., Likmeta A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging. ICAIF.

Experimental Results Trading EURUSD FX with Transaction Costs

Annualized average P&L with transaction costs (10^{-5}) as a function of the search budget, K = 100. Average over 50 runs, 95% confidence intervals

Vittori, E., Likmeta A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging. ICAIF.

4. Option Hedging with Risk-Averse RL

Vanilla options: contracts that offer the buyer the right to buy or sell a certain amount of the underlying asset at a predefined price at a certain future time

Option hedging: a sequential decision process in which at each round $t \in \{1, ..., T\}$ over the life of the option $T \in \mathbb{N}$, a trader decides how much to hold of the underlying instrument to minimize the price swings caused by the option

Option Hedging as an MDP

Approaches to Option Hedging

Background

\cdot Classical approach

[Black and Scholes, 1973]

- Model the market as GBM
- Assume continuous time hedging
- Assume no market frictions
- Solve resulting PDE
- Reinforcement Learning approach [Kolm and Ritter, 2019]
 - Collect/simulate data
 - Learn to hedge

Approaches to Option Hedging

Background

- Classical approach [Black and Scholes, 1973]
 - Model the market as GBM
 - Assume continuous time hedging
 - Assume no market frictions
 - Solve resulting PDE
- Reinforcement Learning approach [Kolm and Ritter, 2019]
 - Collect/simulate data
 - Learn to hedge

Main contributions

Option Hedging with Risk Averse RL

[Vittori et al., 2020b]

• Use of the risk-averse policy search RL algorithm: TRVO

Trust Region Volatility Optimization (TRVO)

• Reward volatility

$$\nu_{\pi}^{2} = (1 - \gamma) \underset{\substack{s_{0} \sim \mu \\ a_{t} \sim \pi(\cdot | s_{t}) \\ s_{t+1} \sim \mathcal{P}(\cdot | s_{t}, a_{t})}}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(\mathcal{R}(s_{t}, a_{t}) - J_{\pi} \right)^{2} \right]$$

• Mean-volatility objective $\eta_{\pi} = J_{\pi} - \lambda \nu_{\pi}^2$

Bisi, L., Sabbioni, L., Vittori, E., Papini, M., and Restelli, M. (2020). Risk-averse trust region optimization for reward-volatility reduction. IJCAI.

Financial Environment

Vanilla call option

- time to maturity = 60 days
- unitary notional
- \cdot implied volatility = 20%
- \cdot interest rates = 0
- $K = S_0 = 100$
- + starting price (ATM) option \sim 3.24
- \cdot starting delta = 0.5

training on 10k episodes and testing on 2k episodes

Simulated underlying

- GBM
- \cdot no drift
- \cdot volatility = 20%
- $\cdot S_0 = 100$
- 5 time steps per day
- \cdot bid ask spread = 0.1

Experimental Results, Action per Time-step

- $\cdot\,$ delta hedge with no transaction costs \rightarrow average P&L \sim 0, volatility \sim 0.16
- \cdot delta hedge with transaction costs ightarrow average P&L \sim -0.3, volatility \sim 0.18

Experimental Results with Transaction Costs

Costs vs Risk changing λ

Vittori, E., Trapletti, M., and Restelli, M. (2020). Option Hedging with Risk Averse Reinforcement Learning. ICAIF.

Experimental Results with Transaction Costs

Vittori, E., Trapletti, M., and Restelli, M. (2020). Option Hedging with Risk Averse Reinforcement Learning. ICAIF.

5. Conclusions

Conclusions

Today's Topics

- \cdot Online portfolio optimization
 - Controlling transaction costs in OPO
- · Quantitative trading
 - FX trading using Open Loop UCT
- \cdot Option hedging
 - Equity option hedging using TRVO

Conclusions

Today's Topics

- \cdot Online portfolio optimization
 - Controlling transaction costs in OPO
- · Quantitative trading
 - FX trading using Open Loop UCT
- \cdot Option hedging
 - Equity option hedging using TRVO

Final Remarks

- Major financial tasks in the Capital Markets modelled as MDPs
- Broad applicability of RL based techniques to financial problems
- Data driven approaches without explicit modelling assumptions

Q&A

CONTACTS

edoardo.vittori@polimi.it

edoardo-vittori

References i

```
[Agarwal et al., 2006] Agarwal, A., Hazan, E., Kale, S., and Schapire, R. (2006).
Algorithms for portfolio management based on the newton method.
In ICML.
```

```
[Almgren and Chriss, 2001] Almgren, R. and Chriss, N. (2001).
```

Optimal execution of portfolio transactions.

```
Journal of Risk, 3:5–40.
```

[Avellaneda and Stoikov, 2008] Avellaneda, M. and Stoikov, S. (2008). High-frequency trading in a limit order book. *Quantitative Finance*, 8(3):217–224.

```
[Baba and Kozaki, 1992] Baba, N. and Kozaki, M. (1992).
An intelligent forecasting system of stock price using neural networks.
In IJCNN, volume 1.
```

[Bernasconi de Luca et al., 2021] Bernasconi de Luca, M., Vittori, E., Trovò, F., and Restelli, M. (2021). Conservative online convex optimization.

In ECML.

[Bisi et al., 2020] Bisi, L., Sabbioni, L., Vittori, E., Papini, M., and Restelli, M. (2020). Risk-averse trust region optimization for reward-volatility reduction. In IICAI. Special Track on AI in FinTech.

References ii

```
[Black and Scholes, 1973] Black, F. and Scholes, M. (1973).
The pricing of options and corporate liabilities.
```

Journal of political economy, 81(3):637–654.

[Boyd et al., 2017] Boyd, S., Busseti, E., Diamond, S., Kahn, R. N., Koh, K., Nystrup, P., and Speth, J. (2017). Multi-period trading via convex optimization.

arXiv preprint.

[Briola et al., 2021] Briola, A., Turiel, J., Marcaccioli, R., and Aste, T. (2021). Deep reinforcement learning for active high frequency trading. arXiv preprint.

[Buehler et al., 2019] Buehler, H., Gonon, L., Teichmann, J., and Wood, B. (2019). Deep hedging. *Quantitative Finance*, pages 1–21.

```
[Byrd et al., 2019] Byrd, D., Hybinette, M., and Balch, T. H. (2019).
Abides: Towards high-fidelity market simulation for ai research.
arXiv preprint.
```

[Cannelli et al., 2020] Cannelli, L., Nuti, G., Sala, M., and Szehr, O. (2020). Hedging using reinforcement learning: Contextual k-armed bandit versus q-learning. arXiv preprint.

References iii

```
[Cao et al., 2019] Cao, J., Chen, J., Hull, J. C., and Poulos, Z. (2019).
Deep hedging of derivatives using reinforcement learning.
Available at SSRN.
```

[Cover and Ordentlich, 1996] Cover, T. and Ordentlich, E. (1996). Universal portfolios with side information.

IEEE Transactions on Information Theory, 42(2):348–363.

[Das et al., 2013] Das, P., Johnson, N., and Banerjee, A. (2013). Online lazy updates for portfolio selection with transaction costs. In AAAI.

```
[Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011).
Adaptive subgradient methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7).
```

[Ernst et al., 2005] Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. IMLR. 6(Apr):503-556.

[Ganesh et al., 2019] Ganesh, S., Vadori, N., Xu, M., Zheng, H., Reddy, P., and Veloso, M. (2019). Reinforcement learning for market making in a multi-agent dealer market. *arXiv preprint.*

References iv

```
[Gârleanu and Pedersen, 2013] Gârleanu, N. and Pedersen, L. H. (2013).
  Dynamic trading with predictable returns and transaction costs.
  The Journal of Finance, 68(6):2309–2340.
  Applied Mathematical Finance, 26(5):387–452.
```

```
[Guéant and Manziuk, 2019] Guéant, O. and Manziuk, I. (2019).
```

```
Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality.
```

```
[Guo et al., 2019] Guo, X., Hu, A., Xu, R., and Zhang, J. (2019).
   Learning mean-field games.
```

```
arXiv preprint.
```

```
[Halperin, 2019] Halperin, I. (2019).
```

```
The glbs g-learner goes nuglear: fitted g iteration, inverse rl, and option portfolios.
```

```
Quantitative Finance, pages 1–11.
```

```
[Hazan, 2019] Hazan, E. (2019).
  Introduction to online convex optimization.
  arXiv preprint.
```

```
[Hazan et al., 2007] Hazan, E., Agarwal, A., and Kale, S. (2007).
  Logarithmic regret algorithms for online convex optimization.
  MACH LEARN, 69:169-192.
```

References v

```
[Hendricks and Wilcox, 2014] Hendricks, D. and Wilcox, D. (2014).
  A reinforcement learning extension to the almgren-chriss framework for optimal trade execution.
  In CIFEr, pages 457-464, IFEF.
[Hoi et al., 2021] Hoi, S. C., Sahoo, D., Lu, J., and Zhao, P. (2021).
  Online learning: A comprehensive survey.
  Neurocomputing, 459:249-289.
[Kalai and Vempala, 2002] Kalai, A. and Vempala, S. (2002).
  Efficient algorithms for universal portfolios.
  I MACH LEARN RES. 3(Nov):423-440.
[Karpe et al., 2020] Karpe, M., Fang, J., Ma, Z., and Wang, C. (2020).
  Multi-agent reinforcement learning in a realistic limit order book market simulation.
  arXiv preprint.
[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006).
  Bandit based monte-carlo planning.
  In ECML
[Kolm and Ritter, 2019] Kolm, P. N. and Ritter, G. (2019).
  Dynamic replication and hedging: A reinforcement learning approach.
```

The Journal of Financial Data Science, 1(1):159–171.

References vi

```
[Kolm and Ritter, 2020] Kolm, P. N. and Ritter, G. (2020).
Modern perspectives on reinforcement learning in finance.
Available at SSRN.
[Lecarpentier et al., 2018] Lecarpentier, E., Infantes, G., Lesire, C., and Rachelson, E. (2018).
Open loop execution of tree-search algorithms.
In IJCAI.
```

```
[Li and Hoi, 2014] Li, B. and Hoi, S. (2014).
Online portfolio selection: A survey.
ACM COMPUT SURV, 46(3):35.
```

```
[Li et al., 2018] Li, B., Wang, J., Huang, D., and Hoi, S. (2018).
Transaction cost optimization for online portfolio selection.
QUANT FINANC, 18(8):1411–1424.
```

```
[Li et al., 2012] Li, B., Zhao, P., Hoi, S., and Gopalkrishnan, V. (2012).
Pamr: Passive aggressive mean reversion strategy for portfolio selection.
MACH LEARN, 87(2):221–258.
```

[Lin and Beling, 2020] Lin, S. and Beling, P. A. (2020).

An end-to-end optimal trade execution framework based on proximal policy optimization. In *IJCAI*, pages 4548–4554.

References vii

[Liu et al., 2020] Liu, X.-Y., Yang, H., Chen, Q., Zhang, R., Yang, L., Xiao, B., and Wang, C. D. (2020). Finrl: A deep reinforcement learning library for automated stock trading in quantitative finance. arXiv preprint.

[Markowitz, 1952] Markowitz, H. (1952).

Portfolio selection. *The journal of finance,* 7(1):77–91.

[Meng and Khushi, 2019] Meng, T. L. and Khushi, M. (2019). Reinforcement learning in financial markets. Data, 4(3):110.

[Merton, 1969] Merton, R. C. (1969).

Lifetime portfolio selection under uncertainty: The continuous-time case.

The review of Economics and Statistics, pages 247–257.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

[Moody and Saffell, 2001] Moody, J. and Saffell, M. (2001).

Learning to trade via direct reinforcement.

IEEE transactions on neural Networks, 12(4):875–889.

References viii

```
[Nevmyvaka et al., 2006] Nevmyvaka, Y., Feng, Y., and Kearns, M. (2006).
   Reinforcement learning for optimized trade execution.
  In ICML pages 673-680.
[Ning et al., 2018] Ning, B., Lin, F. H. T., and Jaimungal, S. (2018).
   Double deep g-learning for optimal execution.
   arXiv preprint.
[Ritter, 2017] Ritter, G. (2017).
   Machine learning for trading.
  Available at SSRN
[Riva et al., 2021] Riva, A., Bisi, L., Sabbioni, L., Liotet, P., Vittori, E., Trapletti, M., Pinciroli, M., and Restelli, M. (2021).
   Learning fx trading strategies with fgi and persistant actions.
  In ICAIE.
[Schulman et al., 2015] Schulman, L. Levine, S., Abbeel, P., Jordan, M. L. and Moritz, P. (2015).
   Trust region policy optimization.
  In ICML, volume 37, pages 1889–1897,
[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
   Proximal policy optimization algorithms.
```

CoRR, abs/1707.06347.

References ix

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017).

Mastering the game of go without human knowledge.

nature, 550(7676):354–359.

[Spooner et al., 2018] Spooner, T., Fearnley, J., Savani, R., and Koukorinis, A. (2018). Market making via reinforcement learning.

arXiv preprint.

[Spooner and Savani, 2020] Spooner, T. and Savani, R. (2020).

Robust market making via adversarial reinforcement learning.

[Streeter and McMahan, 2012] Streeter, M. and McMahan, H. B. (2012).

No-regret algorithms for unconstrained online convex optimization. *arXiv preprint arXiv:*1211.2260.

[Théate and Ernst, 2021] Théate, T. and Ernst, D. (2021). An application of deep reinforcement learning to algorithmic trading. Expert Systems with Applications, 173:114632. [Vittori et al., 2020a] Vittori, E., Bernasconi de Luca, M., Trovò, F., and Restelli, M. (2020a). Dealing with transaction costs in portfolio optimization: Online gradient descent with momentum. In ICAIF.

[Vittori et al., 2021] Vittori, E., Likmeta, A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging.

In ICAIF.

[Vittori et al., 2020b] Vittori, E., Trapletti, M., and Restelli, M. (2020b). Option hedging with risk averse reinforcement learning. In *ICAIF*.

[Vodopivec et al., 2017] Vodopivec, T., Samothrakis, S., and Ster, B. (2017).

On monte carlo tree search and reinforcement learning. Journal of Artificial Intelligence Research, 60:881–936.

[Watkins, 1989] Watkins, C. J. C. H. (1989).

Learning from delayed rewards.

PhD thesis, King's College, Cambridge.

[Williams, 1992] Williams, R. J. (1992).

Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256.

References xi

[Zinkevich, 2003] Zinkevich, M. (2003).

Online convex programming and generalized infinitesimal gradient ascent. In *ICML*.

A. Contributions and Challenges

Main Contributions

Main Contributions

- · Online portfolio optimization
 - Controlling transaction costs in OPO
- · Quantitative trading
 - FX trading using Open Loop UCT
 - Two currency FX trading using FQI
- · Bond market making
 - Mean Field Games and FQI
- Option hedging
 - Equity option hedging using TRVO
 - Credit option hedging using TRVO

Optimal execution

- Using TS to adapt to the nonstationarity of the markets

Final Remarks

- Major financial tasks in the Capital Markets sector can be modelled as MDPs
- Broad applicability of RL based techniques to financial problems
- Data driven approaches without explicit modelling assumptions

Current Challenges in Applying RL

\cdot Acquisition of training data

- Simulation via stochastic models
- GANs or other advanced ML approaches

\cdot Non-stationarity of the financial markets

- Market regimes
- Rare events
- $\cdot\,$ Low signal to noise ratio
 - Control frequency
 - Data processing
- · Resistance to trust a completely autonomous trading agent

Future Works I

Online Portfolio Optimization

- Evaluate the feasibility of using in a high frequency trading framework

Quantitative Trading

- Expand feature set in state, including both microstructural order book facts and possible predictive signals
- Expand to n asset scenario
- \cdot Hedging
 - Expand to hedging of a portfolio of derivatives
- Market Making
 - Use real data or market simulators in order to introduce realism
 - Combine with hedging

\cdot Optimal Execution

- Improve and generalize the approach
- Combine with trading

Future Works II

· Reinforcement Learning

- Dealing with non-stationarity
- Optimal control frequency
- Monte Carlo Tree Search
 - Extend algorithms such as Alphazero [Silver et al., 2017] to be compatible with continuous stochastic states
 - Improve the generative model
- Expert Learning
 - Analyze potential applications in high frequency scenarios

B. RL Fundamentals

Reinforcement Learning Intro

• Returns

$$G(\tau) = \sum_{t=0}^{\infty} \gamma^t R_t$$

• Action-Value function

$$Q_{\pi}(s,a) = \mathop{\mathbb{E}}_{\tau \sim \pi}[G(\tau)|s_0 = s, a_0 = a]$$

• Objective

$$J = \max_{\pi} \mathop{\mathbb{E}}_{\tau \sim \pi} [G(\tau))]$$

RL: Value Based & Policy Search

• Value based learn the action-value function

$$Q_{\pi}(s,a) = \underset{\tau \sim \pi}{\mathbb{E}} [G(\tau)|s_0 = s, a_0 = a]$$
$$= r(s,a) + \gamma \underset{\substack{a' \sim \pi\\s' \sim P}}{\mathbb{E}} [Q(s',a')]$$

Bellman Equation

- Examples
 - Q-Learning [Watkins, 1989]
 - FQI [Ernst et al., 2005]
 - DQN [Mnih et al., 2013]

• **Policy search** move in the policy space using experience

$$abla_ heta J(\pi_ heta) = \mathop{\mathbb{E}}_{ au \sim \pi_ heta} \left[\sum_{t=0}^ au
abla_ heta \log \pi_ heta(a_t|\mathsf{s}_t) G(au)
ight]$$

- Examples
 - REINFORCE [Williams, 1992]
 - TRPO [Schulman et al., 2015]
 - PPO [Schulman et al., 2017]

C. Quantitative Trading with FQI

Approaches to Trading

Background

Practitioner approach

- Technical analysis
- Macro-economic analysis
- Supervised learning approach [Baba and Kozaki, 1992]
 - Forecast asset prices
 - Derive trade
 - Hard to incorporate market frictions

· Reinforcement Learning approach

[Moody and Saffell, 2001]

- Integrate prediction and action
- Simple to include market frictions

Approaches to Trading

Background

- Practitioner approach
 - Technical analysis
 - Macro-economic analysis
- Supervised learning approach [Baba and Kozaki, 1992]
 - Forecast asset prices
 - Derive trade
 - Hard to incorporate market frictions
- Reinforcement Learning approach [Moody and Saffell, 2001]
 - Integrate prediction and action
 - Simple to include market frictions

Main contributions

Learning FX Trading Strategies with FQI and Persistent Actions

[Riva et al., 2021]

• Use of FQI for FX multi-currency trading

 $\mathcal{D} = \{(s_k, a_k, r_k, s'_k) | k = 1, ..., |\mathcal{D}|\}$

Algorithm 2 Fitted Q Iteration Algorithm

Require: $\hat{Q}_0(s, a) \leftarrow 0 \ \forall s \in S, a \in A$, number of iterations *J*, and load dataset \mathcal{D} 1: for $j \in [J]$ do 2: $\hat{Q}_{j+1} = \arg\min_{f \in \mathcal{F}} \sum_{s, a, r, s' \in D} \left(f(s, a) - r - \gamma \max_{a \in \mathcal{A}} \hat{Q}_j(s', a) \right)^2$ 3: end for 4: Return \hat{Q}_j

 \hat{Q} as extra-tree regressors \rightarrow min-split tuning

Two Currency Model [Riva et al., 2021]

Two currency model definition

- Two FX pairs with common base currency
- 5 actions: $a_t \in \{1, 2, 3, 4, 5\}$
- Portfolio exposure to one FX pair at a time
- Fixed traded amount of base currency: 100k
- Fixed transaction costs: bid-ask = $2 \cdot 10^{-5}$
- Doubled costs for certain trades

Model Assumptions

Trading assumptions

- Episode = Trading Day = 08:00-18:00 CET
- $\cdot\,$ Close any position end of day

Training and testing settings

- Training set: 2017 2018
- Validation set: 2019
- Test set: 2020
- Training algorithm: FQI

MDP assumptions

- Window of 60 price returns
- Time-step with 1-minute, 5-minute, 10-minute frequency (Persistence)

Validation on the single currency pair EURUSD, averaged over 2 seeds

Test Performances: P&L

	Persistence	1	5	10
Sharpe	EUR	-0.22	1.34	0.27
Ratio	GBP	-1.37	1.93	0.63
	Both	-1.45	2.02	0.33

Test Performances: Heat Maps

D. Market Making in Dealer Markets

Market making: a sequential decision process in which at each round $t \in \{1, ..., T\}$ the dealer updates her bid and ask prices to maximize P&L while minimizing inventory

PCS Firm Name	Bid Px/Ask Px	Bid Yld/Ask Yld	BSz x AS	Time↓
Total Axe Size			📟 205 x	
CBBTFIT COMPOSITE	91.844 / 91.868	1.833 / 1.830	X	11:59
BVAL BVAL (Score: 10)	91.624 / 91.640	1.858 / 1.856	X	09:00
Last Trade	91.856		7.7	11:34
NOMXNOMURA INTL PLC LDN	91.848 / 91.882	1.832 / 1.828	🚥 50 x 10	11:59
MZHOMIZUHO INTL	91.8400 / 91.8928	1.832 / 1.827	🚥 5 x 10	11:59
IMIG INTESA SANPAOLO IMIG	91.795 / 91.895	1.838 / 1.827	10×10	11:59
MSEG MORGAN STANLEY LOND	91.847 / 91.922	1.832 / 1.823	3 x 10	11:59
BSGB SANTANDER Ex	91.848 / 91.918	1.831 / 1.824	🚥 25 x 5	11:59
HVGO UniCredit Bank AG	91.800 / 91.919	1.837 / 1.824	5 x 5	11:59
DZBK DZ BANK	91.796 / 91.916	1.838 / 1.824	5 x 5	11:59
Hela Helaba auto ex	91.781 / 91.930	1.840 / 1.823	5 x 5	11:59
DEKA DEKABANK	91.806 / 91.906	1.837 / 1.825	2.5 x 2.5	11:59
BPEG BNP PARIBAS EURO G	91.863 / 91.937	1.830 / 1.822	2x2	11:59

Market Making as an MDP

State:

- price of the asset: P_t (exogenous)
- the inventory: $z_t = z_{t-1} + v_t \mathbb{I}\{won_t\}$

Actions:

•
$$a_1: P_{t,buy}^i(v) = \tilde{P}_{t,buy}(v)(1+a_1)$$

•
$$a_2: P_{t,sell}^i(v) = \tilde{P}_{t,sell}(v)(1+a_2)$$

Reward:

$$r_{t} = \underbrace{\mathbb{I}\{won_{t}\}|v_{t}(P_{t,buy/sell}(v_{t}) - P_{t})|}_{\text{spread P&L}} + \underbrace{Z_{t-1}(P_{t} - P_{t-1})}_{\text{inventory P&L}} - \underbrace{\phi(Z_{t})}_{\text{inventory penalty}}$$

where v_t is the size of the trade, $P_{t,buy/sell}(v_t)$ is the quote published by the market maker, z_t is the inventory, $\phi : \mathbb{R} \to \mathbb{R}^+$ is the penalty of owning a net inventory

Approaches to Market Making

Background

· Classical approach

[Avellaneda and Stoikov, 2008]

- Model the mid-price process and RFQ arrival process
- Define the market maker's utility function
- Model auctions as stochastic processes

· Reinforcement Learning approach

[Ganesh et al., 2019]

- Model the mid-price process and RFQ arrival process
- Define the behavior of the other dealers

Background

- Classical approach
 [Avellaneda and Stoikov, 200
 - Model the mid-price process and RFQ arrival process
 - Define the market maker's utility function
 - Model auctions as stochastic processes
- Reinforcement Learning approach [Ganesh et al., 2019]
 - Model the mid-price process and RFQ arrival process
 - Define the behavior of the other dealers

Main contributions

- Model as an N-player stochastic game, with multiple competing market makers
- Solve by using mean field games and FQI

Learning in Mean-Field Games

- Assume homogeneity/anonymity
- · Mean-field $\mathcal{L} \in \Delta(\mathcal{A} \times \mathcal{S})$ represents players' distribution
- Nash Equilibrium is a pair (π^*, \mathcal{L}^*) s.t. $V(\pi^*, \mathcal{L}^*) \ge V(\pi, \mathcal{L}^*), \forall \pi$

Algorithm 3 Model Free MFG [Guo et al., 2019]

Require: mean-field \mathcal{L}_0 , simulator $\mathcal{E}(.,.;\mathcal{L})$, iterations K

- 1: for $k \in [K]$ do
- 2: Find the single-agent optimal policy π_k with fixed \mathcal{L}_k
- 3: Update \mathcal{L}_{k+1} using $\mathcal{E}(.,.;\mathcal{L})$
- 4: end for
- 5: return (π_k, \mathcal{L}_k)

Experimental Results

Learned Policy

Mean dollar reward

- $\cdot \pi_W$ learned policy
- z: inventory
- $\mathcal{A} = \{-0.03, -0.02, ..., 0.03\}$

- ho_t : mean dollar reward ($\phi=$ 0)
- FQI: trained with MFG-FQI
- \mathfrak{N} : plays $(a_1, a_2) \sim \mathcal{N}(0, 1)$

Experimental Results

- $R = \sum_{t \leq T} \frac{\rho_t}{T}$
- Sharpe ratio S = R/std(R)

E. Credit Index Option Hedging with RL

A **Credit Default Swap** (CDS) is a financial derivative that allows an investor to swap or offset her credit risk with that of another investor

A **receiver** option gives the buyer the possibility of selling protection on the index at the expiry date at a spread equal to the strike

A **payer** option gives the buyer the choice of buying protection at the expiry date at a spread equal to the strike

Approaches to Option Hedging

Background

\cdot Classical approach

[Black and Scholes, 1973]

- Model the market as GBM
- Assume continuous time hedging
- Assume no market frictions
- Solve resulting PDE
- Reinforcement Learning approach [Kolm and Ritter. 2019]
 - Collect/simulate data
 - Learn to hedge

Approaches to Option Hedging

Background

- Classical approach [Black and Scholes, 1973]
 - Model the market as GBM
 - Assume continuous time hedging
 - Assume no market frictions
 - Solve resulting PDE
- Reinforcement Learning approach [Kolm and Ritter, 2019]
 - Collect/simulate data
 - Learn to hedge

Main contributions

- Use of the risk-averse policy search RL algorithm: TRVO
- Training and testing on credit index options
- \cdot Testing on real data

Financial Environment

Long payer option

- time to maturity = 40 days
- €100mln notional
- implied volatility = 60%
- interest rates = 0
- $K(=S_0) = 100$
- · starting price (ATM) option \sim €530k
- \cdot starting delta = 0.5

training on 40k episodes and testing on 2k episodes

Simulated Credit Spread

- GBM
- no drift
- $\sigma = 60\%$
- $\cdot S_0 = 100$
- 17 observations per day

Experimental Results: with/without Transaction Costs

delta hedge with no costs \rightarrow average p&l \sim 0, with costs \rightarrow average p&l \sim -€136k

Experimental Results: GBM Simulated Market

distribution of P&L of $\lambda = 4$ agent with ba = 1.5bps

Experimental Results: Heston Simulated Market

Testing on 2k heston simulated episodes

$$dS_t = \sqrt{\nu_t} S_t dW_t^S$$

$$d\nu_t = \kappa (\theta - \nu_t) dt + \xi \sqrt{\nu_t} dW_t^{\nu}$$

 $u_0 = 60\%^2, \ \kappa = 2, \ \theta = \nu_0, \ \xi = 0.9$ no correlation between the stochastic terms dW_t^S and dW_t^{ν} .

Experimental Results: Real Data

Testing on real data, with option $\sigma = 60\%$ and ba = 1bps

F. Optimal Execution with RL

Optimal execution: a sequential decision process in which at each round $t \in \{1, ..., T\}$ over the maximum execution time T and number of time-steps N + 1, the trader decides what fraction of the total X shares to execute, to minimize the difference between the arrival price and the execution price

Approaches to Optimal Execution

Background

- Practitioner approach
 - TWAP= $\frac{X}{N} \sum_{k=0}^{N} P_k$
- \cdot Classical approach

[Almgren and Chriss, 2001]

- Model the mid-price process
- Model the market impact
- Minimize expected shortfall
- · Reinforcement Learning approach

[Hendricks and Wilcox, 2014]

- Collect/simulate data
- Model the market impact
- \cdot Multi agent approach using ABIDES
 - Learn in a multi-agent simulation

Approaches to Optimal Execution

Background

- Practitioner approach
 - TWAP= $\frac{X}{N} \sum_{k=0}^{N} P_k$
- Classical approach [Almgren and Chriss, 2001]
 - Model the mid-price process
 - Model market impact
 - Minimize expected shortfall
- Reinforcement Learning approach [Hendricks and Wilcox, 2014]
 - Collect/simulate data
 - Model market impact
- $\cdot\,$ Multi agent approach using ABIDES
 - Learn in a multi-agent simulation

Main contributions

- Use of FQI to learn multiple execution policies in a multi-agent simulation
- Use of Thompson Sampling to decide which execution policy to use

Optimal Execution as an MDP

MDP Formulation

- $a_t \in \{0, 0.2, 0.4, ..., 4\}$ represents how much of TWAP *i.e.*, $\frac{X}{N}$ to execute
- $s_t = \text{stylized microstructural order book facts and internal agent information}$ • $r_t = \left(1 - \frac{1}{P_{t_{\text{fill}}}} |P_{t_{\text{fill}}} - P_{\text{arrival}}|\right) \lambda \frac{n_t}{X}$

Environment Formulation

- X = 50,000
- N= 180, T= 30 minutes, au= 10
- Training on 2,000 executions
- Training with FQI [Ernst et al., 2005]

Experimental Performance on Two Scenarios

Performance on Low Volatility Scenario

Performance on High Volatility Scenario

Average return over 50, 30-minute executions with 95% confidence intervals

Thompson Sampling for Optimal Execution

Thompson Sampling - Low Volatility Scenario

Distribution after 5 TS iterations

Distribution after 10 TS iterations

Thompson Sampling - High Volatility Scenario

Distribution after 5 TS iterations

Distribution after 10 TS iterations

G. Conservative Online Convex Optimization

A **market index** is a collection of financial assets, commonly stocks. The returns of the market index are calculated as a weighted average of the returns of the constituents.

The objective of the asset manager is to invest in a subset of the components of the index or to use a different weighting than the index, to outperform the index itself

Conservativeness Objective

 $L_t \leq \tilde{L}_t (1 + \alpha), \, \forall t$

- + $ilde{L}_{ au}$: cumulative loss of the default parameter $ilde{ heta}\in\Theta$
- + $\alpha > 0$: conservativeness level

Conservativeness Objective in OPO

 $W_t(\mathfrak{U}) \geq \tilde{W}_t(1-\kappa), \, \forall t$

Approaches to Portfolio Optimization

Background

Modern Portfolio Optimization [Markowitz, 1952]

- Calculate historical variance and correlations
- Single period

· Intertemporal CAPM

[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period

\cdot Online Portfolio Optimization

[Cover and Ordentlich, 1996]

- Adversarial market
- From expert learning field

Approaches to Portfolio Optimization

Background

- Modern Portfolio Optimization [Markowitz, 1952]
 - Calculate historical variance and correlations
 - Single period

Intertemporal CAPM

[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period
- Online Portfolio Optimization [Cover and Ordentlich, 1996]
 - Adversarial market
 - From expert learning field

Main contributions

Conservative online convex optimization

[Bernasconi de Luca et al., 2021]

 $\cdot\,$ Beating a benchmark in OPO

Algorithm 4 CP- \mathcal{A}

Require: Algorithm $\mathcal{A}, \alpha > 0, \tilde{\theta} \in \Theta$ 1: Set $\tilde{L}_0 \leftarrow 0$, $L_0 \leftarrow 0$, and $\beta_0 \leftarrow 1$ 2: for $t \in [T]$ do 3: Get point $z_t \leftarrow \mathcal{A}(g_1, \ldots, g_{t-1})$ Compute $\omega_t := \left[1 - \left(\frac{L_{t-\tau}(1+\alpha)\tilde{L}_{t-\tau}-\alpha\varepsilon_l}{DG} + 1\right)^+\right]D$ 4: Select $\theta_t = \Pi_{B(\tilde{\theta}, \omega_t)}(z_t)$ 5: 6: Suffer loss $f_t(\theta_t)$ Observe $f_t(z_t)$ and $f_t(\tilde{\theta})$ 7: Set $g_t(z_t) \leftarrow (1 - \beta_t) f_t(z_t)$ with $\beta_t = \begin{cases} 1 - \frac{\omega_t}{||z_t - \theta||_2} & z_t \notin B(\tilde{\theta}, \omega_t) \\ 0 & z_t \in B(\tilde{\theta}, \omega_t) \end{cases}$ 8: 9: end for

Theorem

For any Online Convex Optimization algorithm A, with regret $R_T(A)$ and $\alpha > 0$, CP-A attains regret:

 $R_T(CP-\mathcal{A}) \leq R_T(\mathcal{A}) + \tau DG$

where $\tau = \mathcal{O}(\alpha^{-1})$. Moreover CP- \mathcal{A} is a conservative algorithm

 $D := \sup_{\substack{x,y \in \Theta \\ x \in \Theta}} ||x - y||_2 \text{ is a bound on the diameter of the parameter space } \Theta$ $G := \sup_{x \in \Theta} ||\nabla f_t(x)||_2 \text{ is the upper bound on the norm of the gradient of the loss } f_t(\cdot)$
Experimental Setup

Dataset with minute prices of S&P component stocks from 09/2017 to 02/2018 $\tilde{\theta}=$ 100 randomly chosen stocks

- Metrics
 - Wealth: $W_T(\mathfrak{U}) = \prod_{t=1}^T \langle \mathbf{a}_t, \mathbf{y}_t \rangle$
 - Wealth budget: $P_t(\mathfrak{U}) = W_t(\mathfrak{U}) (1 \kappa) \tilde{W}_t$
- \cdot Algorithms
 - Online Gradient Descent [Zinkevich, 2003]
 - CRDG [Streeter and McMahan, 2012]
 - CS-OGD
 - · CP-OGD

H. State of the Art

Option Hedging with RL

• Cannelli, L., Nuti, G., Sala, M., and Szehr, O. (2020). Hedging using reinforcement learning: Contextual *k*-armed bandit versus *q*-learning.

arXiv preprint

• Kolm, P. N. and Ritter, G. (2019). Dynamic replication and hedging: A reinforcement learning approach.

The Journal of Financial Data Science, 1(1):159–171

- Buehler, H., Gonon, L., Teichmann, J., and Wood, B. (2019). Deep hedging. *Quantitative Finance*, pages 1–21
- Halperin, I. (2019). The qlbs q-learner goes nuqlear: fitted q iteration, inverse rl, and option portfolios.

Quantitative Finance, pages 1–11

• Cao, J., Chen, J., Hull, J. C., and Poulos, Z. (2019). Deep hedging of derivatives using reinforcement learning.

Available at SSRN

Trading with RL

• Théate, T. and Ernst, D. (2021). An application of deep reinforcement learning to algorithmic trading.

Expert Systems with Applications, 173:114632

• Briola, A., Turiel, J., Marcaccioli, R., and Aste, T. (2021). Deep reinforcement learning for active high frequency trading.

arXiv preprint

• Kolm, P. N. and Ritter, G. (2020). Modern perspectives on reinforcement learning in finance.

Available at SSRN

• Liu, X.-Y., Yang, H., Chen, Q., Zhang, R., Yang, L., Xiao, B., and Wang, C. D. (2020). Finrl: A deep reinforcement learning library for automated stock trading in quantitative finance.

arXiv preprint

• Meng, T. L. and Khushi, M. (2019). Reinforcement learning in financial markets. *Data*, 4(3):110 • Spooner, T. and Savani, R. (2020). Robust market making via adversarial reinforcement learning.

IJCAI

- Ganesh, S., Vadori, N., Xu, M., Zheng, H., Reddy, P., and Veloso, M. (2019). Reinforcement learning for market making in a multi-agent dealer market.
- Guéant, O. and Manziuk, I. (2019). Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality.

Applied Mathematical Finance, 26(5):387–452

• Spooner, T., Fearnley, J., Savani, R., and Koukorinis, A. (2018). Market making via reinforcement learning.

arXiv preprint

Optimal Execution with RL

- Karpe, M., Fang, J., Ma, Z., and Wang, C. (2020). Multi-agent reinforcement learning in a realistic limit order book market simulation.
- Lin, S. and Beling, P. A. (2020). An end-to-end optimal trade execution framework based on proximal policy optimization.

In *IJCAI*, pages 4548–4554

• Ning, B., Lin, F. H. T., and Jaimungal, S. (2018). Double deep q-learning for optimal execution.

arXiv preprint

• Hendricks, D. and Wilcox, D. (2014). A reinforcement learning extension to the almgren-chriss framework for optimal trade execution.

In CIFEr, pages 457–464. IEEE

• Nevmyvaka, Y., Feng, Y., and Kearns, M. (2006). Reinforcement learning for optimized trade execution.

In *ICML*, pages 673–680

Online Portfolio Optimization

- Hoi, S. C., Sahoo, D., Lu, J., and Zhao, P. (2021). Online learning: A comprehensive survey. *Neurocomputing*, 459:249–289
- Li, B., Wang, J., Huang, D., and Hoi, S. (2018). Transaction cost optimization for online portfolio selection.

QUANT FINANC, 18(8):1411-1424

- Li, B. and Hoi, S. (2014). Online portfolio selection: A survey. ACM COMPUT SURV, 46(3):35
- Li, B., Zhao, P., Hoi, S., and Gopalkrishnan, V. (2012). Pamr: Passive aggressive mean reversion strategy for portfolio selection.

MACH LEARN, 87(2):221–258

• Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimization.

MACH LEARN, 69:169-192

Multiperiod Trading/Portfolio Optimization

• Kolm, P. N. and Ritter, G. (2020). Modern perspectives on reinforcement learning in finance.

Available at SSRN

• Ritter, G. (2017). Machine learning for trading.

Available at SSRN

• Boyd, S., Busseti, E., Diamond, S., Kahn, R. N., Koh, K., Nystrup, P., and Speth, J. (2017).

Multi-period trading via convex optimization.

arXiv preprint

• Gârleanu, N. and Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction costs.

The Journal of Finance, 68(6):2309–2340

• Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case.

The review of Economics and Statistics, pages 247–257

My Publications I

• Vittori, E., Likmeta, A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging.

In ICAIF

- Riva, A., Bisi, L., Sabbioni, L., Liotet, P., Vittori, E., Trapletti, M., Pinciroli, M., and Restelli, M. (2021). Learning fx trading strategies with fqi and persistant actions. In ICAIF
- Bernasconi de Luca, M., Vittori, E., Trovò, F., and Restelli, M. (2021). Conservative online convex optimization.

In ECML

- Vittori, E., Bernasconi de Luca, M., Trovò, F., and Restelli, M. (2020a). Dealing with transaction costs in portfolio optimization: Online gradient descent with momentum. In ICAIF
- Vittori, E., Trapletti, M., and Restelli, M. (2020b). **Option hedging with risk averse** reinforcement learning.

In ICAIF

• Bisi, L., Sabbioni, L., Vittori, E., Papini, M., and Restelli, M. (2020). Risk-averse trust region optimization for reward-volatility reduction.

In IJCAI. Special Track on AI in FinTech.

Research Venues

Machine Learning

- Neurips
- ICML
- IJCAI
- · AAAI
- ECML
- Journal of Machine Learning Research

ML in Finance

- ICAIF
- The Journal of Financial Data Science

Quant Finance

- Mathematical Finance
- Finance and Stochastics
- Applied Mathematical Finance
- Risk Magazine
- Journal of Empirical Finance
- Journal of Computational Finance

I. Additional Material

Experiments: Wealth $W_T^C(\mathfrak{U})$

Specific run, on the Corona dataset for $\gamma=0$

Specific run on 5 stocks of the NYSE(O) for $\gamma=0.01$

Experiments: Average APY

Average Average Annual Percentage Yield $A(W_T)$ computed on the wealth $W_T^C(\mathbf{a}_{1:T}, \mathbf{y}_{1:T})$: $A(W_T) = W_T^{250/T} - 1$

Experiments: Average variation of the portfolio

Average variation of the portfolio incurred on a varying time horizon t:

$$V_t(\mathfrak{U}) = \frac{C_t(\mathfrak{U})}{\gamma t}$$

Empirical Risk Minimization vs Online Optimization

ERM

- Samples are generated from a distribuition
- Minimize expected loss given a colletion of samples (dataset)
- Subject to Adversarial attacks and Concept Drift
- Voice to text, image classification, Natural Language Processing

Online Optimization [Hazan, 2019]

- Allows samples to be generated by an adversary
- No assumption on the distribuition of the data
- No guarantees on the first phase of the learning process
- Spam classification, Malware detection, Fraud detection

How to obtain a best of both worlds approach and obtain an online algorithm which has controlled performance at each time?

Algorithm 5 CS- \mathcal{A}

```
Require: Online learning algorithm \mathcal{A}, conservativeness level \alpha > 0, default parameter \tilde{\theta} \in \Theta
  1: Set \tilde{L}_0 \leftarrow 0, L_0 \leftarrow 0
  2: for t \in [T] do
      if L_{t-1} + \epsilon_u - (1 + \alpha)\epsilon_l \leq \tilde{L}_{t-1}(1 + \alpha) then
  3:
         z_t \leftarrow \mathcal{A}(f_{t-1}(z_{t-1}))
  4:
  5:
          Select \theta_t \leftarrow z_t
  6:
         else
  7:
          Z_t \leftarrow Z_{t-1}
         Select \theta_t \leftarrow \tilde{	heta}
 8:
  9٠
          end if
10:
          Suffer loss f_t(\theta_t)
          Observe feedback f_t(z_t) and f_t(\tilde{\theta})
 11:
12: end for
```

Experimental Setup

Tasks

- Linear Regression: Synthetic data
- Binary Classification: IMDB and SpamBase

Metrics

- Budget: $Z_t = \tilde{L}_t(1 + \alpha) L_t$
- Regret: R_t

Algorithms

- Online Gradient Descent [Zinkevich, 2003]
- ADAGRAD [Duchi et al., 2011]
- CRDG [Streeter and McMahan, 2012]
- CS-OGD
- · CP-OGD

ABIDES realistically replicates the financial market environment reproducing the characteristics of electronic markets:

- Continuous double-auction trading
- Network latency and agent computation delays
- Communication solely by means of standardized message protocols

It is possible to create a multi-agent composition using pre-defined agents such as the **exchange** agent, **value** agents, **momentum** agents, **noise** agents and **market maker** agents or using **custom made** agents

The price process is described by a fundamental value

ABIDES [Byrd et al., 2019] reproduces the characteristics of electronic markets such as continuous double-auction trading and network latency.

