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2. Online Portfolio Optimization with Transaction Costs
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Defining Expert Learning

Expert Learning
1. Agent makes a decision: θt ∈ Θ, based on
suggestions of experts E

2. Environment chooses outcome yt and loss
ft(θt, yt)

3. Update cumulative loss LT =
T∑
t=1
ft(θt, yt)

Objective

• Regret: RT = LT − inf
e∈E

T∑
t=1
ft(θe,t, yt)

• No regret: RTT → 0

Agent

Environment

θtft(θt, yt)

Experts: E

θe,t ft(θe,t, yt)

1
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From Expert Learning to Online Portfolio Optimization

Online Portfolio Optimization Setting
• at ∈ ∆M−1 is the portfolio allocation
• The experts are Constant Rebalancing Portfolios

• a∗ = arg infa∈∆M−1

T∑
t=1
ft(a, yt) is the Best CRP

• ft(a, yt) = − log(⟨a, yt⟩) is the loss
• yt =

(
pt,1
pt−1,1

, . . . ,
pt,M
pt−1,M

)
are the price relatives

Limitations: no transaction costs

Agent

Environment

atft(at,yt)

Experts: CRPs

ae,t ft(ae,t,yt)

1
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Approaches to Portfolio Optimization

Background

• Modern Portfolio Optimization
[Markowitz, 1952]

- Calculate variance and correlations
- Single period

• Intertemporal CAPM
[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period

• Online Portfolio Optimization
[Cover and Ordentlich, 1996]

- Adversarial market
- Multi period
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Approaches to Portfolio Optimization

Background

• Modern Portfolio Optimization
[Markowitz, 1952]

- Calculate variance and correlations
- Single period

• Intertemporal CAPM
[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period

• Online Portfolio Optimization
[Cover and Ordentlich, 1996]

- Adversarial market
- Multi period

Main contributions

Dealing with Transaction Costs in
Portfolio Optimization: Online
Gradient Descent with Momentum
[Vittori et al., 2020a]

• Keeping transaction costs under
control in OPO

• Definition of a algorithm: OGDM with
total regret guarantees
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Total Regret: Adding Transaction Costs

Total Regret

RCT =
T∑
t=1

ft(at, yt)− inf
a∈∆M−1

T∑
t=1

ft(a, yt)︸ ︷︷ ︸
RT : standard regret

+ γ
T∑
t=1

||at − at−1||1︸ ︷︷ ︸
CT : transaction costs

γ is the proportional transaction rate for buying and selling stocks
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Online Gradient Descent with Momentum

Algorithm 1 OGDM in OPO with Transaction Costs

Require: learning rate sequence {η1, . . . , ηT}, momentum parameter sequence {λ1, . . . , λT}
1: Set a1 ← 1

M 1
2: for t ∈ {1, . . . , T} do

3: Select at+1 ← Π∆M−1

(
at + ηt

yt
⟨yt,at⟩ −

λt
2 (at − at−1)

)
4: Observe yt+1 from the market
5: Get wealth log(⟨yt+1, at+1⟩)− γ||at+1 − at||1
6: end for

Total Regret

RCT ≤ O(
√
T)

Vittori, E., Bernasconi De Luca, M., Trovò, F., and Restelli, M. (2020). Dealing with Transaction Costs in Portfolio Optimization:
Online Gradient Descent with Momentum. ICAIF.
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Comparison with State of the Art in OPO

Online Portfolio Optimization

• Universal Portfolios (UCP) [Kalai and Vempala, 2002]
• Online Newton Step (ONS) [Agarwal et al., 2006]
• Online Lazy Updates (OLU) [Das et al., 2013]

Algorithm type
Metric OGDM UCP OLU ONS
RT O(

√
T) O(log T) O(

√
T) O(log T)

RCT O(
√
T) O(log T) O(T) -

Complexity Θ(M) Θ(TM) Θ(M) Θ(M2)
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Experimental Results: Average APY

Average results NYSE dataset
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Vittori, E., Bernasconi De Luca, M., Trovò, F., and Restelli, M. (2020). Dealing with Transaction Costs in Portfolio Optimization:
Online Gradient Descent with Momentum. ICAIF.
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3. Quantitative Trading with MCTS
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Quantitative Trading

Trading: a sequential decision process in which at each round t ∈ {1, . . . , T} over a trading
horizon T ∈ N, a trader decides whether to go long, short or stay flat with respect to an
asset to maximize her wealth

MDP Configuration

• at ∈ {−1, 0, 1}
• st = ([Pt−w, ..., Pt],at−1, t)

• rt+1 = at(Pt+1 − Pt)︸ ︷︷ ︸
market movement

− bid-ask
2 |at − at−1|︸ ︷︷ ︸
transaction costs
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Approaches to Trading

Background

• Practitioner approach
- Technical analysis
- Macro-economic analysis

• Supervised learning approach
[Baba and Kozaki, 1992]

- Forecast asset prices
- Derive trade
- Hard to incorporate market frictions

• Reinforcement Learning approach
[Moody and Saffell, 2001]

- Integrate prediction and action
- Simple to include market frictions
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Approaches to Trading

Background

• Practitioner approach
- Technical analysis
- Macro-economic analysis

• Supervised learning approach
[Baba and Kozaki, 1992]

- Forecast asset prices
- Derive trade
- Hard to incorporate market frictions

• Reinforcement Learning approach
[Moody and Saffell, 2001]

- Integrate prediction and action
- Simple to include market frictions

Main contributions

Monte Carlo Tree Search for Trading
and Hedging
[Vittori et al., 2021]

• Use of Open Loop MCTS for single
currency FX trading
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Monte Carlo Tree Search (MCTS)
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Upper Confidence Tree (UCT) [Kocsis and Szepesvári, 2006]

• Selection using UCB1 an = argmaxi=1..K Xi,Ti(n−1) + C
√

2 log n
Ti(n−1)

• Convergence to the optimal solution in deterministic environments
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Planning Tree in Deterministic and Stochastic Environments

UCT in deterministic environments
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Open Loop UCT [Lecarpentier et al., 2018]

• Nodes are distributions over states
• Open-loop value of action sequence τ :

VOL(s, τ) = E

[ m∑
t=1

γtrt
∣∣∣s0 = s,at ∈ τ

]

• Open-loop value of a node Nd,i:

V
(
Nd,i

)
= E

s∼P(·|s0,τd,i)
[V∗OL(s)]

where V∗OL(s) = maxτ∈Am VOL(s, τ)

𝑠!

𝑎1 𝑎"

𝑎1

𝑎1
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Q-learning Backpropagation

• Standard Backpropation

Qt
(
Nd,i,a

)
= (1− 1

N )Qt
(
Nd,i,a

)
+
1
N (rt + γVt

(
Nd+1,j

)
)

• Temporal Difference Backpropagation, based on the Q-Learning update rule
[Vodopivec et al., 2017]

Qt
(
Nd,i,a

)
= (1− β)Qt

(
Nd,i,a

)
+ β

(
rt + γmax

a′
Qt

(
Nd+1,j,a′

))

28



Generative Model

Clustering generative model
1. Start from the current price window
wt = (Pt−M, . . . , Pt−1)

2. Extract window of returns δt = Pt−Pt−1
Pt−1

,
δt = (δt−M, . . . , δt−1)

3. Find the K nearest neighbors of δt in
the historical dataset D

4. Use the neighbors to project future
asset prices

𝜹𝒕
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Experimental Results Trading EURUSD FX without Transaction Costs

Experimental results average annual P&L

Budget Neighbors

P&
L 

(%
)

Annualized average P&L with no transaction costs, as a function of the search budget and
the numbers of neighbors. Average over 50 runs, 95% confidence intervals

Vittori, E., Likmeta A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging. ICAIF. 30



Experimental Results Trading EURUSD FX with Transaction Costs

Experimental results average annual P&L

Budget

P&
L 

(%
)

Annualized average P&L with transaction costs (10−5) as a function of the search budget,
K = 100. Average over 50 runs, 95% confidence intervals

Vittori, E., Likmeta A., and Restelli, M. (2021). Monte carlo tree search for trading and hedging. ICAIF. 31
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Option Hedging Intro

Vanilla options: contracts that offer the buyer the right to buy or sell a certain amount of
the underlying asset at a predefined price at a certain future time

Option hedging: a sequential decision process in which at each round t ∈ {1, . . . , T} over
the life of the option T ∈ N, a trader decides how much to hold of the underlying
instrument to minimize the price swings caused by the option

Option Hedging as an MDP
• at ∈ [0, 1]: current hedge portfolio
• st = [St, Ct, ∂C(St)

∂S ,at−1]
• rt+1 = Ct+1 − Ct︸ ︷︷ ︸

option variation

−at · (St+1 − St)︸ ︷︷ ︸
market movement

− c(at − at−1)︸ ︷︷ ︸
transact. costs

C(S)

K S
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Approaches to Option Hedging

Background

• Classical approach
[Black and Scholes, 1973]

- Model the market as GBM
- Assume continuous time hedging
- Assume no market frictions
- Solve resulting PDE

• Reinforcement Learning approach
[Kolm and Ritter, 2019]

- Collect/simulate data
- Learn to hedge
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Approaches to Option Hedging

Background

• Classical approach
[Black and Scholes, 1973]

- Model the market as GBM
- Assume continuous time hedging
- Assume no market frictions
- Solve resulting PDE

• Reinforcement Learning approach
[Kolm and Ritter, 2019]

- Collect/simulate data
- Learn to hedge

Main contributions

Option Hedging with Risk Averse RL
[Vittori et al., 2020b]

• Use of the risk-averse policy search RL
algorithm: TRVO
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Trust Region Volatility Optimization (TRVO)

• Reward volatility

ν2π = (1− γ) E
s0∼µ

at∼π(·|st)
st+1∼P(·|st,at)

[ ∞∑
t=0

γt (R(st,at)− Jπ)2
]

• Mean-volatility objective ηπ = Jπ − λν2π
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p&
l

Time

High 
reward 

volatility

Low reward 
volatility

TRVO      Optimizing Return Variance

Bisi, L., Sabbioni, L., Vittori, E., Papini, M., and Restelli, M. (2020). Risk-averse trust region optimization for reward-volatility
reduction. IJCAI.
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Financial Environment

Vanilla call option
• time to maturity = 60 days
• unitary notional
• implied volatility = 20%
• interest rates = 0
• K = S0 = 100
• starting price (ATM) option ∼ 3.24
• starting delta = 0.5

Simulated underlying
• GBM
• no drift
• volatility = 20%
• S0 = 100
• 5 time steps per day
• bid ask spread = 0.1

training on 10k episodes and testing on 2k episodes

Vittori, E., Trapletti, M., and Restelli, M. (2020). Option Hedging with Risk Averse Reinforcement Learning. ICAIF. 36



Experimental Results, Action per Time-step

Results without transaction costs
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• delta hedge with no transaction costs→ average P&L ∼ 0, volatility ∼ 0.16
• delta hedge with transaction costs→ average P&L ∼ -0.3, volatility ∼ 0.18

Vittori, E., Trapletti, M., and Restelli, M. (2020). Option Hedging with Risk Averse Reinforcement Learning. ICAIF. 37



Experimental Results with Transaction Costs

Costs vs Risk changing λ
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Experimental Results with Transaction Costs

Pareto Frontier
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Conclusions

Today’s Topics

• Online portfolio optimization
- Controlling transaction costs in OPO

• Quantitative trading
- FX trading using Open Loop UCT

• Option hedging
- Equity option hedging using TRVO

Final Remarks
• Major financial tasks in the Capital
Markets modelled as MDPs

• Broad applicability of RL based
techniques to financial problems

• Data driven approaches without
explicit modelling assumptions
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A. Contributions and Challenges



Main Contributions

Main Contributions

• Online portfolio optimization
- Controlling transaction costs in OPO

• Quantitative trading
- FX trading using Open Loop UCT
- Two currency FX trading using FQI

• Bond market making
- Mean Field Games and FQI

• Option hedging
- Equity option hedging using TRVO
- Credit option hedging using TRVO

• Optimal execution
- Using TS to adapt to the
nonstationarity of the markets

Final Remarks
• Major financial tasks in the Capital
Markets sector can be modelled as
MDPs

• Broad applicability of RL based
techniques to financial problems

• Data driven approaches without
explicit modelling assumptions



Current Challenges in Applying RL

• Acquisition of training data
- Simulation via stochastic models
- GANs or other advanced ML approaches

• Non-stationarity of the financial markets
- Market regimes
- Rare events

• Low signal to noise ratio
- Control frequency
- Data processing

• Resistance to trust a completely autonomous trading agent



Future Works I

• Online Portfolio Optimization
- Evaluate the feasibility of using in a high frequency trading framework

• Quantitative Trading
- Expand feature set in state, including both microstructural order book facts and possible
predictive signals

- Expand to n asset scenario
• Hedging

- Expand to hedging of a portfolio of derivatives
• Market Making

- Use real data or market simulators in order to introduce realism
- Combine with hedging

• Optimal Execution
- Improve and generalize the approach
- Combine with trading



Future Works II

• Reinforcement Learning
• Dealing with non-stationarity
• Optimal control frequency

• Monte Carlo Tree Search
• Extend algorithms such as Alphazero [Silver et al., 2017] to be compatible with continuous
stochastic states

• Improve the generative model
• Expert Learning

• Analyze potential applications in high frequency scenarios



B. RL Fundamentals



Reinforcement Learning Intro

• Returns
G(τ) =

∞∑
t=0

γtRt

• Action-Value function

Qπ(s,a) = E
τ∼π

[G(τ)|s0 = s,a0 = a]

• Objective
J = max

π
E

τ∼π
[G(τ))]



RL: Value Based & Policy Search

• Value based learn the action-value
function

Qπ(s,a) = E
τ∼π

[G(τ)|s0 = s,a0 = a]

= r(s,a) + γ E
a′∼π
s′∼P

[Q(s′,a′)]

Bellman Equation

• Examples
- Q-Learning [Watkins, 1989]
- FQI [Ernst et al., 2005]
- DQN [Mnih et al., 2013]

• Policy search move in the policy space
using experience

∇θJ(πθ) = E
τ∼πθ

[ T∑
t=0

∇θ log πθ(at|st)G(τ)
]

• Examples
- REINFORCE [Williams, 1992]
- TRPO [Schulman et al., 2015]
- PPO [Schulman et al., 2017]
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Approaches to Trading

Background

• Practitioner approach
- Technical analysis
- Macro-economic analysis

• Supervised learning approach
[Baba and Kozaki, 1992]

- Forecast asset prices
- Derive trade
- Hard to incorporate market frictions

• Reinforcement Learning approach
[Moody and Saffell, 2001]

- Integrate prediction and action
- Simple to include market frictions



Approaches to Trading

Background

• Practitioner approach
- Technical analysis
- Macro-economic analysis

• Supervised learning approach
[Baba and Kozaki, 1992]

- Forecast asset prices
- Derive trade
- Hard to incorporate market frictions

• Reinforcement Learning approach
[Moody and Saffell, 2001]

- Integrate prediction and action
- Simple to include market frictions

Main contributions

Learning FX Trading Strategies with
FQI and Persistent Actions
[Riva et al., 2021]

• Use of FQI for FX multi-currency
trading



Fitted Q-Iteration [Ernst et al., 2005]

D = {(sk,ak, rk, s′k)|k = 1, ..., |D|}

Algorithm 2 Fitted Q Iteration Algorithm

Require: Q̂0(s, a)← 0 ∀s ∈ S, a ∈ A, number of iterations J, and load dataset D
1: for j ∈ [J] do

2: Q̂j+1 = argmin
f∈F

∑
s,a,r,s′∈D

(
f(s, a)− r− γmax

a∈A
Q̂j(s′, a)

)2

3: end for
4: Return Q̂J

Q̂ as extra-tree regressors→ min-split tuning



Two Currency Model [Riva et al., 2021]

Two currency model definition
• Two FX pairs with common base currency
• 5 actions: at ∈ {1, 2, 3, 4, 5}
• Portfolio exposure to one FX pair at a time
• Fixed traded amount of base currency: $100k
• Fixed transaction costs: bid-ask = $2 · 10−5

• Doubled costs for certain trades

GBPUSD

EURUSD

lon
g

lon
g

sh
or
t

sh
or
t



Model Assumptions

Trading assumptions
• Episode = Trading Day = 08:00-18:00 CET
• Close any position end of day

Training and testing settings
• Training set: 2017 - 2018
• Validation set: 2019
• Test set: 2020
• Training algorithm: FQI

MDP assumptions

• Window of 60 price returns
• Time-step with 1-minute, 5-minute, 10-minute frequency (Persistence)



Validation: Model Selection

Validation on the single currency pair EURUSD, averaged over 2 seeds



Test Performances: P&L

Persistence 1 5 10
Sharpe EUR -0.22 1.34 0.27
Ratio GBP -1.37 1.93 0.63

Both -1.45 2.02 0.33



Test Performances: Heat Maps
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Bond Market Making

Market making: a sequential decision process in which at each round t ∈ {1, . . . , T} the
dealer updates her bid and ask prices to maximize P&L while minimizing inventory



Market Making as an MDP

State:
• price of the asset: Pt (exogenous)
• the inventory: zt = zt−1 + vtI{wont}

Actions:
• a1 : Pit,buy(v) = P̃t,buy(v)(1+ a1)
• a2 : Pit,sell(v) = P̃t,sell(v)(1+ a2)

Reward:
rt = I{wont}|vt(Pt,buy/sell(vt)− Pt)|︸ ︷︷ ︸

spread P&L

+ zt−1(Pt − Pt−1)︸ ︷︷ ︸
inventory P&L

− ϕ(zt)︸ ︷︷ ︸
inventory penalty

where vt is the size of the trade, Pt,buy/sell(vt) is the quote published by the market maker, zt
is the inventory, ϕ : R → R+ is the penalty of owning a net inventory



Approaches to Market Making

Background

• Classical approach
[Avellaneda and Stoikov, 2008]

- Model the mid-price process and RFQ
arrival process

- Define the market maker’s utility
function

- Model auctions as stochastic
processes

• Reinforcement Learning approach
[Ganesh et al., 2019]

- Model the mid-price process and RFQ
arrival process

- Define the behavior of the other
dealers



Approaches to Market Making

Background

• Classical approach
[Avellaneda and Stoikov, 2008]

- Model the mid-price process and RFQ
arrival process

- Define the market maker’s utility
function

- Model auctions as stochastic
processes

• Reinforcement Learning approach
[Ganesh et al., 2019]

- Model the mid-price process and RFQ
arrival process

- Define the behavior of the other
dealers

Main contributions
• Model as an N-player stochastic game,
with multiple competing market
makers

• Solve by using mean field games and
FQI



Learning in Mean-Field Games

• Assume homogeneity/anonymity
• Mean-field L ∈ ∆(A× S) represents players’ distribution
• Nash Equilibrium is a pair (π∗,L∗) s.t.
V(π∗,L∗) ≥ V(π,L∗), ∀π

Algorithm 3 Model Free MFG [Guo et al., 2019]

Require: mean-field L0, simulator E(., .;L), iterations K
1: for k ∈ [K] do
2: Find the single-agent optimal policy πk with fixed Lk
3: Update Lk+1 using E(., .;L)
4: end for
5: return (πk,Lk)



Experimental Results

Learned Policy
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• ρt : mean dollar reward (ϕ = 0)
• FQI: trained with MFG-FQI
• N: plays (a1,a2) ∼ N (0, 1)



Experimental Results

Sharpe ratio box plot
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Credit Index Option Hedging

A Credit Default Swap (CDS) is a financial derivative that allows an investor to swap or
offset her credit risk with that of another investor

A receiver option gives the buyer the possibility of selling protection on the index at the
expiry date at a spread equal to the strike

A payer option gives the buyer the choice of buying protection at the expiry date at a
spread equal to the strike



Approaches to Option Hedging

Background

• Classical approach
[Black and Scholes, 1973]

- Model the market as GBM
- Assume continuous time hedging
- Assume no market frictions
- Solve resulting PDE

• Reinforcement Learning approach
[Kolm and Ritter, 2019]

- Collect/simulate data
- Learn to hedge



Approaches to Option Hedging

Background

• Classical approach
[Black and Scholes, 1973]

- Model the market as GBM
- Assume continuous time hedging
- Assume no market frictions
- Solve resulting PDE

• Reinforcement Learning approach
[Kolm and Ritter, 2019]

- Collect/simulate data
- Learn to hedge

Main contributions
• Use of the risk-averse policy search RL
algorithm: TRVO

• Training and testing on credit index
options

• Testing on real data



Financial Environment

Long payer option
• time to maturity = 40 days
• €100mln notional
• implied volatility = 60%
• interest rates = 0
• K(= S0) = 100
• starting price (ATM) option ∼ €530k
• starting delta = 0.5

Simulated Credit Spread
• GBM
• no drift
• σ = 60%
• S0 = 100
• 17 observations per day

training on 40k episodes and testing on 2k episodes



Experimental Results: with/without Transaction Costs
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Experimental Results: GBM Simulated Market
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Experimental Results: Heston Simulated Market

Testing on 2k heston simulated episodes

dSt =
√
νt St dWS

t

dνt = κ (θ − νt)dt+ ξ
√
νtdWν

t

ν0 = 60%2, κ = 2, θ = ν0, ξ = 0.9
no correlation between the stochastic
terms dWS

t and dWν
t .
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Experimental Results: Real Data
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Optimal Execution Problem

Optimal execution: a sequential decision process in which at each round t ∈ {1, . . . , T} over the
maximum execution time T and number of time-steps N+ 1, the trader decides what fraction of the
total X shares to execute, to minimize the difference between the arrival price and the execution price



Approaches to Optimal Execution

Background

• Practitioner approach
- TWAP= X

N
∑N

k=0 Pk
• Classical approach
[Almgren and Chriss, 2001]

- Model the mid-price process
- Model the market impact
- Minimize expected shortfall

• Reinforcement Learning approach
[Hendricks and Wilcox, 2014]

- Collect/simulate data
- Model the market impact

• Multi agent approach using ABIDES
- Learn in a multi-agent simulation



Approaches to Optimal Execution

Background

• Practitioner approach
- TWAP= X

N
∑N

k=0 Pk
• Classical approach
[Almgren and Chriss, 2001]

- Model the mid-price process
- Model market impact
- Minimize expected shortfall

• Reinforcement Learning approach
[Hendricks and Wilcox, 2014]

- Collect/simulate data
- Model market impact

• Multi agent approach using ABIDES
- Learn in a multi-agent simulation

Main contributions
• Use of FQI to learn multiple execution
policies in a multi-agent simulation

• Use of Thompson Sampling to decide
which execution policy to use



Optimal Execution as an MDP

MDP Formulation

• at ∈ {0, 0.2, 0.4, ..., 4} represents how much of TWAP i.e., X
N to execute

• st = stylized microstructural order book facts and internal agent information
• rt =

(
1− 1

Ptfill
|Ptfill − Parrival|

)
λntX

Environment Formulation

• X = 50, 000
• N = 180, T = 30 minutes, τ = 10
• Training on 2,000 executions
• Training with FQI [Ernst et al., 2005]



Experimental Performance on Two Scenarios

Performance on Low Volatility Scenario Performance on High Volatility Scenario

Average return over 50, 30-minute executions with 95% confidence intervals



Thompson Sampling for Optimal Execution

𝐷!

𝜋! 𝜃!
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Thompson Sampling - Low Volatility Scenario

Distribution after 5 TS iterations Distribution after 10 TS iterations



Thompson Sampling - High Volatility Scenario

Distribution after 5 TS iterations Distribution after 10 TS iterations
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Context - Beating a Market Index

A market index is a collection of financial assets, commonly stocks. The returns of the
market index are calculated as a weighted average of the returns of the constituents.

The objective of the asset manager is to invest in a subset of the components of the index
or to use a different weighting than the index, to outperform the index itself

Conservativeness Objective
Lt ≤ L̃t(1+ α), ∀t

• L̃T : cumulative loss of the default parameter θ̃ ∈ Θ

• α > 0 : conservativeness level

Conservativeness Objective in OPO
Wt(U) ≥ W̃t(1− κ), ∀t



Approaches to Portfolio Optimization

Background

• Modern Portfolio Optimization
[Markowitz, 1952]

- Calculate historical variance and
correlations

- Single period

• Intertemporal CAPM
[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period

• Online Portfolio Optimization
[Cover and Ordentlich, 1996]

- Adversarial market
- From expert learning field



Approaches to Portfolio Optimization

Background

• Modern Portfolio Optimization
[Markowitz, 1952]

- Calculate historical variance and
correlations

- Single period

• Intertemporal CAPM
[Merton, 1969]

- Make assumptions on asset dynamics
- Multi period

• Online Portfolio Optimization
[Cover and Ordentlich, 1996]

- Adversarial market
- From expert learning field

Main contributions

Conservative online convex
optimization
[Bernasconi de Luca et al., 2021]

• Beating a benchmark in OPO



The Conservative Projection Algorithm [Bernasconi de Luca et al., 2021]

Algorithm 4 CP-A

Require: Algorithm A, α > 0, θ̃ ∈ Θ
1: Set L̃0 ← 0, L0 ← 0, and β0 ← 1
2: for t ∈ [T] do
3: Get point zt ← A(g1, . . . , gt−1)

4: Compute ωt :=

[
1−

(
Lt−1−(1+α)L̃t−1−αεl

DG + 1
)+

]
D

5: Select θt = ΠB(θ̃,ωt)(zt)
6: Suffer loss ft(θt)
7: Observe ft(zt) and ft(θ̃)
8: Set gt(zt)← (1− βt)ft(zt) with βt =

{
1− ωt

||zt−θ̃||2
zt /∈ B(θ̃, ωt)

0 zt ∈ B(θ̃, ωt)
9: end for

zt−1

zt

Θ

B(θ̃, wt)

θ̃

θt



Main Theoretical Result

Theorem
For any Online Convex Optimization algorithm A, with regret RT(A) and α > 0, CP-A
attains regret:

RT(CP-A) ≤ RT(A) + τDG

where τ = O(α−1). Moreover CP-A is a conservative algorithm

D := sup
x,y∈Θ

||x− y||2 is a bound on the diameter of the parameter space Θ

G := sup
x∈Θ

||∇ft(x)||2 is the upper bound on the norm of the gradient of the loss ft(·)



Experimental Setup

Dataset with minute prices of S&P component stocks from 09/2017 to 02/2018
θ̃ = 100 randomly chosen stocks

• Metrics
• Wealth: WT(U) =

T∏
t=1
⟨at, yt⟩

• Wealth budget: Pt(U) = Wt(U)− (1− κ)W̃t

• Algorithms
• Online Gradient Descent [Zinkevich, 2003]
• CRDG [Streeter and McMahan, 2012]
• CS-OGD
• CP-OGD



Experimental Results
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Experiments: Wealth WC
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Experiments: Average APY
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Experiments: Average variation of the portfolio
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Problem Context
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Empirical Risk Minimization vs Online Optimization

ERM
• Samples are generated from a
distribuition

• Minimize expected loss given a
colletion of samples (dataset)

• Subject to Adversarial attacks and
Concept Drift

• Voice to text, image classification,
Natural Language Processing

Online Optimization [Hazan, 2019]
• Allows samples to be generated by
an adversary

• No assumption on the distribuition
of the data

• No guarantees on the first phase of
the learning process

• Spam classification, Malware
detection, Fraud detection

How to obtain a best of both worlds approach and obtain an online algorithm which has
controlled performance at each time?



The Conservative Switching Algorithm

Algorithm 5 CS-A
Require: Online learning algorithm A, conservativeness level α > 0, default parameter θ̃ ∈ Θ
1: Set L̃0 ← 0, L0 ← 0
2: for t ∈ [T] do
3: if Lt−1 + ϵu − (1+ α)ϵl ≤ L̃t−1(1+ α) then
4: zt ← A(ft−1(zt−1))
5: Select θt ← zt
6: else
7: zt ← zt−1
8: Select θt ← θ̃
9: end if
10: Suffer loss ft(θt)
11: Observe feedback ft(zt) and ft(θ̃)
12: end for



Experimental Setup

Tasks
• Linear Regression: Synthetic data
• Binary Classification: IMDB and SpamBase

Metrics
• Budget: Zt = L̃t(1+ α)− Lt
• Regret: Rt

Algorithms
• Online Gradient Descent [Zinkevich, 2003]
• ADAGRAD [Duchi et al., 2011]
• CRDG [Streeter and McMahan, 2012]
• CS-OGD
• CP-OGD



Results: Synthetic Data
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Reuslts: IMDB
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ABIDES [Byrd et al., 2019]

ABIDES realistically replicates the financial market environment reproducing the
characteristics of electronic markets:

• Continuous double-auction trading
• Network latency and agent computation delays
• Communication solely by means of standardized message protocols

It is possible to create a multi-agent composition using pre-defined agents such as the
exchange agent, value agents, momentum agents, noise agents and market maker agents
or using custom made agents

The price process is described by a fundamental value



ABIDES Multi-agent Market Simulator

ABIDES [Byrd et al., 2019] reproduces the characteristics of electronic markets such as
continuous double-auction trading and network latency.
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