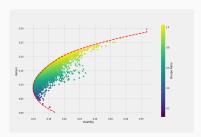
Online Gradient Descent with Momentum Dealing with Transaction Costs in Portfolio Optimization

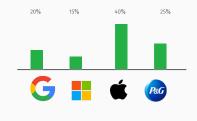
E. Vittori, M. Bernasconi de Luca, F. Trovó, M. Restelli

Table of contents

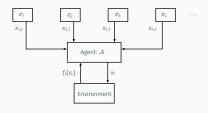

- 1. Online Portfolio Optimization Context
- 2. Problem Formulation
- 3. Dealing with Transaction Costs Proposed Solution
- 4. Experiments
- 5. Conclusions
- 6. Appendix

Online Portfolio Optimization -Context

Introduction


Modern Portfolio Optimization

- Statistical assumptions on the stock dynamics
- · Backward looking



Online Portfolio Optimization

- · Adversarial market
- From Expert Learning field

Online Learning with Experts Advice

- Regret: $R_T = \sum_{t=1}^{T} f_t(x_t) \inf_{e \in \mathcal{E}} \sum_{t=1}^{T} f_t(x_{e,t})$
- · Per-round Computational Complexity

4

Problem Formulation

From Expert Learning to Online Portfolio Optimization

- the experts are Constant Rebalancing Portfolios (CRP)
- $\mathbf{x}^* = \underset{\mathbf{x} \in \Delta_{M-1}}{\mathsf{arg}} \inf_{t=1}^T f_t(\mathbf{x})$ is the Best CRP
- $\mathbf{x}_t \in \Delta_{M-1}$ is the portfolio allocation
- $\mathbf{y}_t = \left(rac{p_{t,1}}{p_{t-1,1}}, \dots, rac{p_{t,M}}{p_{t-1,M}}
 ight)$ are the returns of the stocks
- $f_t(\mathbf{x}) = -\log(\langle \mathbf{x}, \mathbf{y}_t \rangle)$ is the loss

Regret in Online Portfolio Optimization

$$R_T = log(W_T(\boldsymbol{x}^*, \dots, \boldsymbol{x}^*)/W_T(\boldsymbol{x}_1, \dots, \boldsymbol{x}_T)),$$

where
$$W_T(\mathbf{x}_1, \dots, \mathbf{x}_T) = \prod_{t=1}^T \langle \mathbf{x}_t, \mathbf{y}_t \rangle$$
 is the wealth

Limitations: No transaction costs

Total Regret: Adding Transaction Costs

Total Regret

$$R_T^C = \underbrace{\log(W_T(\mathbf{x}^*, \dots, \mathbf{x}^*)/W_T(\mathbf{x}_1, \dots, \mathbf{x}_T))}_{R_T: \text{ standard regret}} + \underbrace{\gamma \sum_{t=1}^T ||\mathbf{x}_t - \mathbf{x}_{t-1}||_1}_{C_T: \text{ transaction costs}},$$

 γ is the proportional transaction rate for buying and selling stocks

Dealing with Transaction Costs -

Proposed Solution

Online Gradient Descent with Momentum

Algorithm 1 OGDM in OPO with Transaction Costs

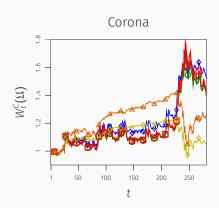
Require: learning rate sequence $\{\eta_1, \ldots, \eta_T\}$, momentum parameter sequence $\{\lambda_1, \ldots, \lambda_T\}$

- 1: Set $\mathbf{x}_1 \leftarrow \frac{1}{M}\mathbf{1}$
- 2: **for** $t \in \{1, ..., T\}$ **do**
- 3: Select $\mathbf{x}_{t+1} \leftarrow \Pi_{\Delta_{M-1}} \left(\mathbf{x}_t + \eta_t \frac{\mathbf{r}_t}{\langle \mathbf{r}_t, \mathbf{x}_t \rangle} \frac{\lambda_t}{2} (\mathbf{x}_t \mathbf{x}_{t-1}) \right)$
- 4: Observe \mathbf{r}_{t+1} from the market
- 5: Get wealth $\log(\langle \mathbf{r}_{t+1}, \mathbf{x}_{t+1} \rangle) \gamma ||\mathbf{x}_{t+1} \mathbf{x}_t||_1$
- 6: end for

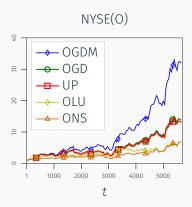
Total Regret

$$R_{T}^{C} \leq \left[\frac{D^{2}}{K_{\eta}}\left(\frac{1}{2} + K_{\lambda}\right) + K_{\eta}\tilde{G}\left(2\gamma\sqrt{M} + \tilde{G}\right)\right]\sqrt{T}$$

where
$$D = \sup_{\mathbf{x}, \mathbf{y} \in X} ||\mathbf{x} - \mathbf{y}||_2$$
, $\tilde{G} = \sup_{\mathbf{x} \in X} ||\nabla f_t(\mathbf{x})||_2 + \frac{DK_\lambda}{2K_\eta}$, $\eta_t = \frac{K_\eta}{\sqrt{t}}$, $\lambda_t = \frac{K_\lambda}{t}$

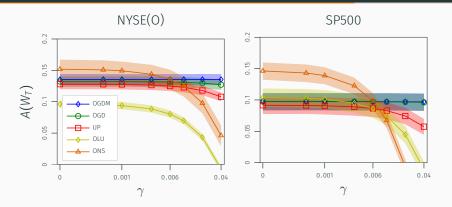

Comparison with State of the Art

- · Online Portfolio Optimization:
 - Universal Portfolios (UP) [Cover and Ordentlich (1996)]
 - Online Newton Step (ONS) [Agarwal et al. (2006)]
- · Online Portfolio Optimization with Transaction Costs:
 - Online Lazy Updates (OLU) [Das et al. (2013)]


	OGDM	UP	OLU	ONS
R⊤	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$
R_T^C	$\mathcal{O}(\sqrt{T})$	-	$\mathcal{O}(T)$	-
Complexity	⊖(M)	$\Theta(T^{M})$	Θ(M)	$\Theta(M^2)$

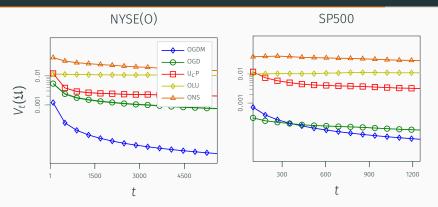
Experiments

Experiments: Wealth $W_T^C(\mathfrak{U})$



Specific run, on the Corona dataset for $\gamma=0$

Specific run on 5 stocks of the NYSE(O) for $\gamma = 0.01$


Experiments: Average APY

Average Average Annual Percentage Yield $A(W_T)$ computed on the wealth $W_T^C(\mathbf{x}_{1:T}, \mathbf{r}_{1:T})$:

$$A(W_T) = W_T^{250/T} - 1$$

Experiments: Average variation of the portfolio

Average variation of the portfolio incurred on a varying time horizon *t*:

$$V_t(\mathfrak{U}) = \frac{C_t(\mathfrak{U})}{\gamma t}$$

Conclusions

Conclusions and Future Work

Contributions:

- · OGDM in online portfolio optimization
- · Analysis of the total regret of OGDM
- · Experimental campaign on real data

Future Works:

- · Model stochastic non stationary markets
- Generalize the total regret analysis to other online learning algorithms
- · Test on high frequency data
- · Make transaction costs more realistic

References

- Agarwal, A., Hazan, E., Kale, S., and Schapire, R. (2006). Algorithms for portfolio management based on the newton method. In *ICML*.
- Cover, T. and Ordentlich, E. (1996). Universal portfolios with side information. *IEEE Transactions on Information Theory*, 42(2):348–363.
- Das, P., Johnson, N., and Banerjee, A. (2013). Online lazy updates for portfolio selection with transaction costs. In AAAI, pages 202–208.
- Li, B., Hoi, S., Sahoo, D., and Liu, Z. (2015). Moving average reversion strategy for on-line portfolio selection. *ARTIF INTELL*, 222:104–123.
- Li, B., Zhao, P., Hoi, S., and Gopalkrishnan, V. (2012). Pamr: Passive aggressive mean reversion strategy for portfolio selection. *MACH LEARN*, 87(2):221–258.

Appendix

Experimental Setting

Datasets						
Name	Market	Year Span	Days	Assets		
NYSE(O)	New York Stock Exchange	1962 - 1984	5651	36		
SP500	Standard Poor's 500	1998 - 2003	1276	25		
Corona	Global	2019 - 2020	280	4		

Corona Dataset (03/29/2019 - 05/08/2020)				
Ticker	Description	Market Category		
SPY	SPDR S&P 500 ETF Trust	Equity		
BNDX	Vanguard Bond Index Fund ETF	Fixed Income		
DAX	Global X DAX Germany ETF	Equity		
VIX	CBOE Volatility Index	Derivatives		

State of the Art Algorithms

- Online Portfolio Optimization:
 - Universal Portfolios (UP) [Cover and Ordentlich (1996)]
 - · Online Newton Step (ONS) [Agarwal et al. (2006)]
- · Online Portfolio Optimization with Transaction Costs:
 - Online Lazy Updates (OLU) [Das et al. (2013)]
 - Universal portfolios with costs
- · Heuristics:
 - · Passive Aggressive Mean Reversion (PAMR) [Li et al. (2012)]
 - · Online Moving Average Reversion (OLMAR) [Li et al. (2015)]