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Online Portfolio Optimization -
Context



Introduction

Modern Portfolio Optimization Online Portfolio Optimization
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Problem Formulation



From Expert Learning to Online Portfolio Optimization

- the experts are Constant Rebalancing Portfolios (CRP)

;
- x* = arginf >_ fi(x) is the Best CRP

XEAW_1 t=1
- Xt € Ay_4 is the portfolio allocation
C Y= (pf’j’j“..., Dfi’fM) are the returns of the stocks

- fi(x) = —log({X,yr)) is the loss
Regret in Online Portfolio Optimization
Rr = |Og(WT(X*, Ce ,X*)/VVT(X17 Ce ,XT)),

.
where Wr(xq, ..., Xr) = [[{X¢, Y:) is the wealth
t=1

Limitations: No transaction costs



Total Regret: Adding Transaction Costs

Total Regret

T
R(,; = |0g(WT(X*7. .. ,X*)/WT(X1,...,XT))+’YZ ||Xt = Xt,1H1,
t=1

Rr: standard regret

Cr: transaction costs

~ is the proportional transaction rate for buying and selling stocks



Dealing with Transaction Costs -
Proposed Solution




Online Gradient Descent with Momentum

Algorithm 1 OGDM in OPO with Transaction Costs

Require: learning rate sequence {m,...,nr}, momentum parameter se-
quence {\1,..., A1}

1 Set X + 71

2. forte{1,...,T} do

3 Selectxm Moy (X + ity %(XI—XH)>

4 Observe riq from the market

5. Get wealth log((re+1, Xe41)) — ¥||Xew1 — Xe| |1

6: end for

Total Regret

RS < [Z (2+I<A>+K G(27\F+G)}\ﬁ

where D = sup [x = ||, & = sup [[VA:()ll2 + 5 me = 5 A=

X,yeX



Comparison with State of the Art

- Online Portfolio Optimization:
- Universal Portfolios (UP) [Cover and Ordentlich (1996)]
- Online Newton Step (ONS) [Agarwal et al. (2006)]

- Online Portfolio Optimization with Transaction Costs:
- Online Lazy Updates (OLU) [Das et al. (2013)]

OGDM upP OoLu ONS
Rr O(T) | O(logT) | O(VT) | O(logT)
RS O(VT) - o(T) -
Complexity || ©M) | o™ | M) | O(M?)




Experiments




Experiments: Wealth W5(L()
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Experiments: Average APY
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Experiments: Average variation of the portfolio
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Conclusions




Conclusions and Future Work

Contributions:

- OGDM in online portfolio optimization
- Analysis of the total regret of OGDM

- Experimental campaign on real data
Future Works:

- Model stochastic non stationary markets

- Generalize the total regret analysis to other online learning
algorithms

- Test on high frequency data
- Make transaction costs more realistic
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Experimental Setting

Datasets
Name Market Year Span Days | Assets
NYSE(O) || New York Stock Exchange | 1962 - 1984 | 5651 36
SP500 Standard Poor’s 500 1998 - 2003 | 1276 25
Corona Global 2019 - 2020 | 280 4

Corona Dataset (03/29/2019 - 05/08/2020)
Ticker Description Market Category
SPY SPDR S&P 500 ETF Trust Equity
BNDX || Vanguard Bond Index Fund ETF Fixed Income
DAX Global X DAX Germany ETF Equity
VIX CBOE Volatility Index Derivatives




State of the Art Algorithms

- Online Portfolio Optimization:
- Universal Portfolios (UP) [Cover and Ordentlich (1996)]
- Online Newton Step (ONS) [Agarwal et al. (2006)]

- Online Portfolio Optimization with Transaction Costs:
- Online Lazy Updates (OLU) [Das et al. (2013)]
- Universal portfolios with costs

- Heuristics:

- Passive Aggressive Mean Reversion (PAMR) [Li et al. (2012)]
- Online Moving Average Reversion (OLMAR) [Li et al. (2015)]
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