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Introduction



Online Portfolio Optimization

Given M assets, decide what proportion to invest in each asset in a
sequential manner

• xt s.t.
∑M

j=1 x
j
t = 1, xjt > 0⇒ xt ∈ ∆M−1 is the portfolio allocation

• rt =
(

pt,1
pt−1,1

, . . . ,
pt,M
pt−1,M

)
are the price relatives

• t ≤ 1 day

Algorithm 1 Online Portfolio Optimization
1: Input M assets, set x1 ← 1

M 1
2: for t ∈ {1, . . . , T} do
3: Select xt+1 ← selection policy
4: Observe rt+1 from the market

5: Calculate wealth WT+1 =
T+1∏
t=1
⟨xt, rt⟩

6: end for

Regret guarantees
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Modern Portfolio Optimization

Algorithm 2 Efficient Frontier (Markowitz, 1952)

1: Input M assets and a batch of historical data, set λ > 0
2: Calculate µ,Σ from the data
3: Select x← argmaxx∈∆M−1

x′µ− λ
2 x

′Σx
4: Hold the allocation

• Assumption of stochastic
stock dynamics

• Single-period portfolio
• No theoretical guarantees
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Online Learning with Experts Advice

e1 e2 e3 e4

x1,t x2,t x3,t x4,t

Agent: A

Environment

xtft(xt)

· · ·

• Sequential decision problem
• Adversarial Environment
• Regret: RT =

T∑
t=1
ft(xt)− inf

e∈E

T∑
t=1
ft(xe,t)

• No regret: RT = o(T) for any sequence f1, f2, . . .
• Per-round Computational Complexity

Computational
Complexity Regret
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Halving Algorithm

Predict a sequence of heads or tails yt = {H, T}, assume there are N
experts ei and one of them predicts perfectly the sequence.

Algorithm 2 Halving Algorithm
1: Initialize a weight for each expert wi,t = 1
2: for t ∈ {1, . . . , T} do

3: Select xt+1 ←

H if majority of experts with wi,t = 1 predicts so
T otherwise

4: Observe yt+1
5: If xt+1 ̸= yt+1, set wi,t = 0 for each ei,t+1 ̸= yt+1
6: end for
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Halving Algorithm Regret

Predict a sequence of heads or tails yt = {H, T}, assume there are N
experts ei and one of them predicts perfectly the sequence.

RT =
∑T

t=1 1(xt, yt)−1(e∗t , yt) = m where m is the number of mistakes

Proof:
Define Wt =

∑
i wi,t

At t = 0, m = 0, W0 = N
At each mistake Wm ≤ Wm−1

2
Recursively Wm ≤ W0

2m = N
2m

Since at least one expert is perfect: 1 ≥ N
2m ⇒ m ≤ ⌊log2 N⌋
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Online Portfolio Optimization



From Expert Learning to Online Portfolio Optimization

• The experts are Constant Rebalancing Portfolios (CRP)

• x∗ = arg inf
x∈∆M−1

T∑
t=1
ft(x) is the Best CRP

• ft(x) = − log(⟨x, rt⟩) is the loss

Regret in Online Portfolio Optimization

RT = log(WT(x∗, . . . , x∗)/WT(x1, . . . , xT)),

where WT(x1, . . . , xT) =
T∏
t=1

⟨xt, rt⟩ is the wealth

Limitations: No transaction costs
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Universal Portfolios (UP)

Algorithm 3 Universal Portfolios (Cover and Ordentlich, 1996)

1: Input M assets, set x1 ← 1
M 1, initialize W1

2: for t ∈ {1, . . . , T} do
3: Select xt+1 ←

∫
b∈∆M−1

bWt(b)dµ(b)∫
b∈∆M−1

Wt(b)dµ(b)

4: Observe rt+1 from the market

5: Wt+1 =
t+1∏
t=1
⟨rt+1, xt+1⟩

6: end for

Regret

RT ≤ (M− 1) log(T+ 1)
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Online Newton Step (ONS)

Algorithm 4 Online Newton Step (Agarwal et al., 2006)

Require: β, δ
1: Input M assets, set x1 ← 1

M 1M
2: for t ∈ {1, . . . , T} do
3: Select xt+1 ← ΠAt

∆M−1
(xt − 1

β
A−1
t bt), where:

bt =
∑t

τ=1∇[logτ (xτ · rτ )])
At =

∑t
τ=1∇

2[log(xτ · rτ )] + 1M
ΠAt

∆M−1
is the projection in the norm induced by At

4: Observe rt+1 from the market

5: Wt+1 =
t+1∏
t=1
⟨rt+1, xt+1⟩

6: end for
Regret

RT ≤
10M
8β log

[
T

64β2

]
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Online Gradient Descent (OGD)

Algorithm 5 Online Gradient Descent (Zinkevich, 2003)

Require: learning rate sequence {η1, . . . , ηT}
1: Input M assets, set x1 ← 1

M 1
2: for t ∈ {1, . . . , T} do
3: Select xt+1 ← Π∆M−1

(
xt + ηt

rt
⟨rt,xt⟩

)
4: Observe rt+1 from the market
5: Get wealth increase ⟨rt+1, xt+1⟩
6: end for

Total Regret

RT ≤
(
D2
2K + G2K

)√
T

where D = sup
x,y∈X

||x− y||2, G = sup
x∈X

||∇ft(x)||2, ηt = K√
t
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Online Gradient Descent with
Momentum



Total Regret: Adding Transaction Costs

In order to deal with transaction costs, we extend the definition of
regret to include portfolio turnover.

Total Regret

RCT = log(WT(x∗, . . . , x∗)/WT(x1, . . . , xT))︸ ︷︷ ︸
RT : standard regret

+ γ

T∑
t=1

||xt − xt−1||1︸ ︷︷ ︸
CT : transaction costs

,

γ is the proportional transaction rate for buying and selling stocks
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Online Gradient Descent with Momentum (OGDM)

Algorithm 6 OGDM (Vittori et al., 2020)

Require: learning rate sequence {η1, . . . , ηT}, momentum parameter se-
quence {λ1, . . . , λT}

1: Input M assets, set x1 ← 1
M 1

2: for t ∈ {1, . . . , T} do
3: Select xt+1 ← Π∆M−1

(
xt + ηt

rt
⟨rt,xt⟩ −

λt
2 (xt − xt−1)

)
4: Observe rt+1 from the market
5: Get wealth log(⟨rt+1, xt+1⟩)− γ||xt+1 − xt||1
6: end for
Total Regret

RCT ≤
[
D2
Kη

(
1
2 + Kλ

)
+ KηG̃

(
2γ

√
M+ G̃

)]√
T

where D = sup
x,y∈X

||x− y||2, G̃ = sup
x∈X

||∇ft(x)||2 + DKλ
2Kη , ηt =

Kη√
t , λt =

Kλ
t
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Comparison with State of the Art

• Online Portfolio Optimization:
• Universal Portfolios (UP) [Cover and Ordentlich (1996)]
• Online Newton Step (ONS) [Agarwal et al. (2006)]

• Online Portfolio Optimization with Transaction Costs:
• Online Lazy Updates (OLU) [Das et al. (2013)]

UP ONS OLU OGDM
RT O(log T) O(log T) O(

√
T) O(

√
T)

RCT - - O(T) O(
√
T)

Complexity Θ(TM) Θ(M2) Θ(M) Θ(M)
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Experiments



Experimental Setting

Datasets
Name Market Year Span Days Assets
NYSE(O) New York Stock Exchange 1962 - 1984 5651 36
SP500 Standard Poor’s 500 1998 - 2003 1276 25
Corona Global 2019 - 2020 280 4

Corona Dataset (03/29/2019 - 05/08/2020)
Ticker Description Market Category
SPY SPDR S&P 500 ETF Trust Equity
BNDX Vanguard Bond Index Fund ETF Fixed Income
DAX Global X DAX Germany ETF Equity
VIX CBOE Volatility Index Derivatives
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Experiments: Wealth WC
T(U)
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Experiments: Average APY
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Experiments: Average variation of the portfolio
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Conclusions



Conclusions and Future Work

Contributions:

• OGDM in online portfolio optimization
• Experimental campaign on real data

Future Works:

• Model stochastic non stationary markets
• Generalize the total regret analysis to other online learning
algorithms

Remark:

• In order to rebalance a portfolio with hundreds of assets an
entire day if not more is necessary. Expert learning algorithms
are made to work with small timesteps thanks to the low
computational complexity. A solution could be to work with few
very liquid assets.
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Q&A

Q&A

For any further questions please contact me on
edoardo.vittori@polimi.it
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State of the Art Algorithms

• Algorithms for Online Portfolio Optimization:
• Universal Portfolios (UP) [Cover and Ordentlich (1996)]
• Online Newton Step (ONS) [Agarwal et al. (2006)]

• Algorithms for Online Portfolio Optimization with transaction
costs:

• Online Lazy Updates [Das et al. (2013)]



State of the Art Algorithms

• Online Portfolio Optimization:
• Universal Portfolios (UP) [Cover and Ordentlich (1996)]
• Online Newton Step (ONS) [Agarwal et al. (2006)]

• Online Portfolio Optimization with Transaction Costs:
• Online Lazy Updates (OLU) [Das et al. (2013)]
• Universal portfolios with costs

• Heuristics:
• Passive Aggressive Mean Reversion (PAMR) [Li et al. (2012)]
• Online Moving Average Reversion (OLMAR) [Li et al. (2015)]
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