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Introduction - Trading and Hedging as MDPs

Reward
P&L 

AGENT

Action
Portfolio position

Environment

State
Market prices

Trading

‚ at P t´1, 0, 1u: current portfolio
‚ st “ prpt´w, ..., pts, at´1q

‚ rt “ at ¨ ppt ´ pt´1q ´ cpat ´ at´1q

Option Hedging

‚ at P r0, 1s: current hedge portfolio
‚ st “ rSt, Ct,

BCt
BSt

, at´1s

‚ rt “ CtpStq ´ CtpSt´1q ´ at ¨ pSt ´ St´1q ´

m ¨ |at ´ at´1|
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Batch RL vs MCTS
Batch RL

´ General Policy

´ Model Free

´ Real Time
Testing

´ Stationary
Policy

MCTS

´ Local Policy

´ Model Based

´ Some Delay

´ Non Stationary
Policy
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Monte Carlo Tree Search

Planning 
through 
generative 
model

Observation

Time

ObservationActionObservation
Planning Planning

Action Observation
Planning

Action
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Upper Confidence Tree [Kocsis and Szepesvári, 2006]

‚ Selection using UCB1 an “ arg maxi“1..K Xi,Tipn´1q ` C
b

2 logn
Tipn´1q

‚ Necessary to tune the parameter C, larger C increases exploration
‚ Convergence to the optimal solution in the limit.
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Open loop planning

Open-loop value of τ , starting from
state s:

VOLps, τq “ E

«

m
ÿ

t“1

γtrt

ˇ

ˇ

ˇ
s0 “ s, at P τ

ff

Open-loop value of a node Nd,i:

V pNd,iq “ E
s„Pp¨|s0,τd,iq

“

V ˚
OLpsq

‰

,

where
V ˚
OLpsq “ maxτPAm VOLps, τq
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Progressive Widening
‚ continuous action spaces
‚ stochastic transition models
‚ convergence to optimal solution
‚ necessary to tune the PW parameter α, smaller values create more actions/states

Algorithm 1 Polynomial Upper Confidence Tree (PUCT) Extract [Couetoux, 2013]
1: if tnpxq

α
u ą tpnpxq ´ 1q

α
u then

2: a Ð spxq

3: Childrenpaq ÐChildrenpaq Y pωq

4: else
5: a Ð arg maxaPCpzq V̂ px, aq `

b

npxqepdq

npx,aq

6: end if
7: if tnpwq

α
u “ tpnpwq ´ 1q

α
u then

8: select the child of ω least visited during the simulation
9: else

10: rx1, rs Ð Mpx, aq

11: Childrenpx, aq Ð Childrenpx, aq Y px1
q

12: end if
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TD Backpropagation

Standard Backpropation:

Qt pNd,i, aq “ p1 ´
1

N
qQt pNd,i, aq `

1

N
prt ` γVt pNd`1,jqq

Temporal Difference Backpropagation, based on the Q-Learning update rule [Watkins, 1989], as follows:

Qt pNd,i, aq “ p1 ´ βqQt pNd,i, aq ` β

ˆ

rt ` γmax
a1

Qt

`

Nd`1,j , a
1
˘

˙

Necessary to tune learning parameter β
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Our Approach: Open Loop Q-Learning UCT

Our algorithm consists of the following parts and parameters:
‚ UCT Ñ parameter C

‚ Open loop for stochastic states
‚ Progressive widening for continuous actions Ñ parameter α

‚ Q-Learning backpropagation Ñ parameter β

For the search, it is necessary to choose:
‚ Budget
‚ Search depth P r2, full episodes

‚ Generative model (which can potentially have further parameters)
Lots of parameters to optimize in order to achieve the optimal solution!
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Trading with MCTS
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Clustering generative model

‚ Start from the current price window
wt “ ppt´M , . . . , pt´1q.

‚ Extract window of returns δt “
pt´pt´1

pt´1
,

δt “ pδt´M , . . . , δt´1q.
‚ Find the K nearest neighbors of δt in

the historical dataset D.
‚ Use the neighbors to project future

asset prices.
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Trading with MCTS

‚ at: current portfolio t´1, 0, 1u

‚ st “ prpt´w, ..., pts, at´1q

‚ rt “ at ¨ ppt ´ pt´1q ´ cpat ´ at´1q, where cpat ´ at´1q “ bid´ask
2 ¨ |at ´ at´1|

Algorithm 2 Trading with MCTS

Require: prices p´n, ..., p0, window size M , number of neighbors K
1: for t P t1, . . . , T u do
2: Find K MC trajectories from current return window δt´M , ..., δt´1

3: Plan with QL-OL UCT, sampling the rollouts from the K neighbors.
4: Select action at “ maxa Q pN0,0, aq

5: Observe pt from the market
6: end for
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Results of EURUSD FX data - no costs
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Annualized average P&L with no transaction costs, as a function of the search budget
and the numbers of neighbors. Average over 50 runs, 95% confidence intervals.
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Results of EURUSD FX data with costs
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Annualized average P&L with transaction costs (10´5) as a function of the search
budget, K “ 100. Average over 50 runs, 95% confidence intervals.
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Option Hedging with MCTS
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Option hedging

Vanilla options: contracts that offer the buyer the right to buy or sell a certain amount of the
underlying asset at a predefined price at a certain future time.

Black & Scholes assumptions:
‚ continuous time
‚ continuous “lot size”
‚ no transaction costs

C(S)

K S

Black & Scholes pricing: trade the underlying continously so to match the option delta

δ “
BCpSq

BS
.
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Option Hedging with MCTS

‚ at: current hedge portfolio
‚ st “ rSt, Ct,

BCt
BSt

, at´1s

‚ rt “ CtpStq ´ CtpSt´1q ´ at ¨ pSt`t ´ St´1q ´ m ¨ |at ´ at´1|

Algorithm 3 Option hedging with MCTS

Require: Observe underlying price p0, option price o0
repeat

Calculate implied Black volatility σt and delta dt from ot, pt
Plan with QL-OL UCT using GBM(pt, σt) with rollouts as delta hedge
Select action at “ maxa Q pN0,0, aq

Observe pt`1, ot`1 from the market
until Option expiry
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Results on simulated data
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P&l of the MCTS agent w.r.t. the delta hedge (left) and trading costs generated by
MCTS agent w.r.t delta hedge (right). Average of 2000 simulations, 95% CI. Results in
EUR, annualized and for a single option.
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Results on real data
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Action on SX7E, single option with strike 90 and expiry 17/06/2021, starting 25 working
days before expiry.
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Conclusions and Outlook
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Conclusions and Outlook

Future works
‚ Improve the generative model for trading
‚ Improve the generative model for option hedging
‚ Extend alphazero [Silver et al., 2017] to stochastic states and continuous actions

Contacts
‚ Edoardo Vittori - edoardo.vittori@polimi.it
‚ Amarildo Likmeta - amarildo.likmeta@polimi.it
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Experimental setup

‚ Financial environment:

´ both simulated and real data
´ a single underlying S;
´ a vanilla call option, unitary notional;

‚ Financial parameters:

´ around 20-day long paths, ending at the option’s maturity;
´ 7 time steps per day;
´ σ calibrated from data

‚ Search setup:

´ budget 10,000
´ search depth 4
´ lognormally-generated market data for S: dSt “ σStdWt
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Risk aversion

Considering Rpst, atq “ fpρtq, with ρt “ CtpStq ´ CtpSt´1q ´ at ˆ pSt`k ´ St´1q ´ cpnq

We experimented with various forms of f :
‚ fpxq “ x ´ λx2. It is an approximation of the reward volatility term as defined

in [Bisi et al., 2020]. It is possible to vary λ in order to obtain different results
balancing the trade-off between risk and reward.

‚ fpxq “ ´x2 in this case, we are trying to be completely risk-averse.
‚ fpxq “ ´|abspxq| as before, risk aversion is the only objective.
‚ fpxq “ xMCTS ´ xdelta here we are trying to replicate the delta hedge.
‚ one last possibility is to use the relationship that higher transaction costs lead to a

less risk averse behavior and vice-versa. In other words, making ticksize a parameter
to be optimized, where lower ticksize leads to a higher risk aversion.
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Clustering generative model
Current Price Window Current Return Window Neighbor Returns
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Clustering generative model
Current Price Window Current Return Window Neighbor Returns
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Clustering generative model
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Clustering generative model
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