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Introduction - Trading and Hedging as MDPs

AGENT

Reward Action
P&L Portfolio position
Environment
Trading Option Hedging
® a, € {—1,0,1}: current portfolio ® a; € [0,1]: current hedge portfolio
* s = ([Pt—w; -, Pe], A1) * s =[S, Cy, g%fﬂlt—l]
® ry=as- (pr — pe—1) — c(ar — ar—1) ® 1y = C(St) — Ce(Se—1) —at - (St — St—1) —

m-|a; — ap—1|
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Batch RL vs MCTS
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Monte Carlo Tree Search
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through
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Upper Confidence Tree |[Kocsis and Szepesvari, 2006|

Selection Expansion Sampling Backpropagation

Tree Policy Default Policy

Y

/N

* Selection using UCB; an = arg max;_; e X;7,(n—1) + Cr/ et

Ti(n—1)

® Necessary to tune the parameter C, larger C increases exploration
® Convergence to the optimal solution in the limit.
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Open loop planning

Open-loop value of 7, starting from
state s:

m
Vor(s,7) =E [Z 'ytrt‘so = s,at € T:|
t=1

Open-loop value of a node Ng,;:

V (Nai) = E [V5L(s)],

s~P(s0,7d,i)

where
V&L (s) = maxream Vor (s, )
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Progressive Widening

® continuous action spaces
® stochastic transition models
® convergence to optimal solution

® necessary to tune the PW parameter «, smaller values create more actions/states

Algorithm 1 Polynomial Upper Confidence Tree (PUCT) Extract [Couetoux, 2013]

2 if [n(x)®] > |(n(z) — 1)%] then

a — s(x)
Children(a) «Children(a) u (w)
: else
n(z)ﬁ(d)
n(z,a)

: end if
o if [n(w)?] = |(n(w) — 1)¢] then
: select the child of w least visited during the simulation
9: else
10:  [2',7] « M(=x,a)
11:  Children(z, a) « Children(z,a) U (z')
12: end if

1
2
3
4
5. @< arg max,cq(,) V(x,a) +
6
7
8




TD Backpropagation

Standard Backpropation:

Ot (N @) = (1= 3)Qs (Nais@) + (1 + Vi Was))

Temporal Difference Backpropagation, based on the Q-Learning update rule [Watkins, 1989], as follows:
Q¢ (Nayi,a) = (1 — B)Q¢ (Naji,a) + 8 <7't + ymax Q¢ (Nd+1,j,a,))

Necessary to tune learning parameter 8
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Our Approach: Open Loop Q-Learning UCT

Our algorithm consists of the following parts and parameters:
e UCT — parameter C'
e Open loop for stochastic states
® Progressive widening for continuous actions — parameter «

® (Q-Learning backpropagation — parameter (8

For the search, it is necessary to choose:
® Budget
e Search depth € [2, full episode]
® Generative model (which can potentially have further parameters)

Lots of parameters to optimize in order to achieve the optimal solution!
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Trading with MCTS
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Clustering generative model

Neighbors

e Start from the current price window
wy = (Pt—Ms -+, Pt—1)-

¢ Extract window of returns §; = %,
Ot = (O—pry -5 00-1).

¢ Find the K nearest neighbors of §; in
the historical dataset D.

e Use the neighbors to project future .
asset prices. Y _ P A
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Trading with MCTS

® q;: current portfolio {—1,0, 1}
® S = ([pt—w, "'7pt]7at—1)

® ry=ay- (pr —pi—1) — clay — ar—1), where c(a — ay—1) = 71”‘1_2“5’“ .

at — at—1

Algorithm 2 Trading with MCTS

Require: prices p_y, ..., pg, window size M, number of neighbors K
1: forte{l,...,T} do

2:  Find K MC trajectories from current return window &;_pyz, ..., ;1

3:  Plan with QL-OL UCT, sampling the rollouts from the K neighbors.
4:  Select action a; = max, Q (Noo,a)

5:  Observe p; from the market

6: end for

14 /30



Results of EURUSD FX data - no costs
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Budget Neighbors

Annualized average P&L with no transaction costs, as a function of the search budget
and the numbers of neighbors. Average over 50 runs, 95% confidence intervals.
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Results of EURUSD FX data with costs
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Annualized average P&L with transaction costs (107°) as a function of the search
budget, K = 100. Average over 50 runs, 95% confidence intervals.
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Option Hedging with MCTS
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Option hedging

Vanilla options: contracts that offer the buyer the right to buy or sell a certain amount of the
underlying asset at a predefined price at a certain future time.

co)

Black & Scholes assumptions:
® continuous time
® continuous “lot size”

® no transaction costs

K S
Black & Scholes pricing: trade the underlying continously so to match the option delta

_ 96(8)
b=
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Option Hedging with MCTS

® a;: current hedge portfolio
® st = [Stacn%,%—l]
® = Ct(St) - Ct(St—l) — ag - (St+t - St—l) —m:-jat — a¢—1

Algorithm 3 Option hedging with MCTS

Require: Observe underlying price pg, option price og
repeat
Calculate implied Black volatility o; and delta d; from o, ps
Plan with QL-OL UCT using GBM(p;, 0+) with rollouts as delta hedge
Select action a; = max, Q (N0, a)
Observe pyy1,0¢+1 from the market
until Option expiry
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Results on simulated data

p&l mcts - p&l delta
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P&l of the MCTS agent w.r.t. the delta hedge (left) and trading costs generated by
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MCTS agent w.r.t delta hedge (right). Average of 2000 simulations, 95% CI. Results in
EUR, annualized and for a single option.
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Results on real data

0 25 50 75 100 125 150 175 200
time-step
Action on SX7E, single option with strike 90 and expiry 17/06/2021, starting 25 working
days before expiry.
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Conclusions and Outlook
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Conclusions and Outlook

Future works
® Improve the generative model for trading
® Improve the generative model for option hedging

¢ Extend alphazero [Silver et al., 2017] to stochastic states and continuous actions

Contacts
® Edoardo Vittori - edoardo.vittori@polimi.it

e Amarildo Likmeta - amarildo.likmeta@polimi.it
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Experimental setup

¢ Financial environment:
— both simulated and real data
— a single underlying S}
— a vanilla call option, unitary notional;
* Financial parameters:
— around 20-day long paths, ending at the option’s maturity;
— 7 time steps per day;
— o calibrated from data

® Search setup:

— budget 10,000
— search depth 4
— lognormally-generated market data for S: dS; = 0.S;dW;
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Risk aversion

Considering R(s¢, at) = f(pt), with py = Ci(St) — Ci(Si—1) — ar X (Spyr — Si—1) — ¢(n)
We experimented with various forms of f:
e f(x) =z — \x?. It is an approximation of the reward volatility term as defined
in [Bisi et al., 2020]. It is possible to vary A in order to obtain different results
balancing the trade-off between risk and reward.

f(x) = —2? in this case, we are trying to be completely risk-averse.

f(x) = —|abs(x)| as before, risk aversion is the only objective.

f(x) = zaprers — Tgerta here we are trying to replicate the delta hedge.

® one last possibility is to use the relationship that higher transaction costs lead to a
less risk averse behavior and vice-versa. In other words, making ticksize a parameter
to be optimized, where lower ticksize leads to a higher risk aversion.
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Clustering generative model

Current Price Window — Current Beturn Window  Neighbor Returns
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Clustering generative model

Current Price Window  Current Return Window — Neiohbor Returns

1
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Clustering generative model
Neighbor Returns
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Clustering generative model
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