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Automation and Multi Dealer to Client Platforms

Multi Dealers to Client

MD2C

Client

Dealers

RFQ

bid/ask

Objective
• Obtain a positive PnL with low risk by

doing a large number of transactions,
buying at the bid and selling at the ask
• Keep inventory low in order to have low

capital requirements/risk
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Approaches to Dealer Markets

• Classical approach (single agent)
1. Model the behavior of the other agents
2. Collect data on the behaviour of other dealers
3. Fit the model parameters (see [Fermanian et al., 2016])
4. Solve the optimization problem (see [Ganesh et al., 2019])

• Game Theoretic (multi-agent)
1. Implement rules
2. Solve the optimization problem Learn an Equilibrium
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Motivating Example

Fixed Opponent

Calibrated stochastic model
(0.2, 0.6, 0.2)

Optimization

Best action: Scissor

Learning Opponent/Opponents

OptimizationOptimization
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Mean Field Games
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N-player stochastic games

Environment

Agent 1

Agent 2

Agent N

...
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(1)
k+1)

(r (2)k+1, s
(2)
k+1)

(r (N)
k+1, s

(N)
k+1)

• Combinatorial
complexity in N
• Transitions depend on

the aggregate action
of all the players
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Generalized Mean Field Games [Lasry and Lions, 2007]

Agent 1

Agent 2

Agent ∞

...

Lk

Mean Field

(a(1)
k , s(1)k )

(a(2)
k , s(2)k )

(a(∞)
k , s(∞)

k )

Environment

(r (1)k , s(1)k+1)

(r (2)k , s(2)k+1)

(r (∞)
k , s(∞)

k+1)

• Assume homogene-
ity/anonymity
• Continuum number of

players
• Transition depends

only on the mean
field Lk
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Notation for Generalized Mean Field Games

1. A is the action space
2. S is the state space
3. L ∈ ∆(A× S)
4. µ =

∫
A
L(a, ·)da ∈ ∆(S)

5. r(s, a,L) is the reward

Fixing L
Generalized Mean Field Game with fixed Mean Field are
Markov Decision Process (single agent)
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Solving MDP

1. π is the policy

2. Q(s, a|π,L) = Eπ

[ ∞∑
t=1

γtr(st , at ,L)
∣∣∣(s0, a0) = (s, a)

]
state-action value function

3. V (π,L) = E
[
+∞∑
t=1

γtr(st , at ,L)
]

value function

4. Q∗(s, a|L) = sup
π

Q(s, a|π,L) optimal state-action value function
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Learning in Generalized Mean Field Games

Definition of NE in GMFG
Is a policy π∗ : S → ∆(A) and a mean field L∗ ∈ ∆(S ×A) s.t V (π∗,L∗) ≥ V (π,L∗), ∀π and L∗ is
consistent with policy π∗.

Algorithm 1 Model Free GMFG [Guo et al., 2019]

Require: Initial state-action distribution L0 simulator ELa

1: for k ∈ [K ] do
2: Solve the MDP with fixed state-action distribution Lk

and obtain Q∗
k

3: Update Lk+1 using ELk

4: end for

aEL is a simulator for a fixed Mean Field L.
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Solving the Inner Loop

Q-learning [Watkins, 1989]

Q̂N+1(st , at) = (1− α)Q̂N (st , at)

+ α

[
r(st , at) + γmax

a∈A
Q̂N (st+1, a)

]

Pros
Strong theoretical guarantees of convergence

Cons
Discontinuity between states

FQI [Ernst et al., 2005]

D := {(sk
t , ak

t , rk
t+1, sk

t+1)}Kk=1

Do regression of the function:

(sk
t , ak

t ) 7→ rk
t+1 + γmax

a∈A
Q̂N (sk

t+1, a)

Pros
Continuity is inherited from the regression

Cons
Computationally intensive
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Problem Formulation
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Mean Field Game model of Dealer Markets
We model an environment where the clients see an indicative market price P̃t,buy(v), P̃t,sell(v) and then
put a M market makers in competition for the firm price trough a RFQ. The M dealers are extracted
from a population of M → ∞ market makers.

State
• price of the asset: Pt (exogenous)
• the inventory: zt = zt−1 + vtI{wont}

Actions (a1, a2) where:
• a1 : P i

t,buy(v) = P̃t,buy(v)(1 + a1)

• a2 : P i
t,sell(v) = P̃t,sell(v)(1 + a2)

We assume that the market maker only decides
how much to differ from a spread which is a
function of the size of the trade v

The reward is defined as:

rt = I{wont}|vt(Pt,buy/sell(vt)− Pt)|︸ ︷︷ ︸
spread PnL

+ zt−1(Pt − Pt−1)︸ ︷︷ ︸
inventory PnL

− ϕ(zt)︸ ︷︷ ︸
inventory penalty

, (1)

where vt is the size of the trade, Pt,buy/sell(vt) is the quote published by the market maker, zt is the
inventory, ϕ : R → R+ is the penalty of owning a net inventory
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Experimental Evaluation
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Experimental Setup

Pt+dt = Pt exp

{(
µ− σ2

2

)
dt + σZt

√
dt
}

P̃t,buy/sell(v) = Pt [1± δ(|v|+ 0.01v2)]

vt ∼ U(−1, 1)

ϕ(z) = z2/2, inventory penalization
dt = 1/250, µ = 0, σ = 0.2,P0 = 100
δ = 0.01
M ∈ {2, 4}

Considered Metrics

• R: Mean reward (
T∑

t=1
rt/T )

• L: Mean dollar reward (ϕ = 0)

• S : Sharpe ratio L/std(L)
• Z : Standard deviation of the

inventory
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Agents

• FQI2: GMFG-FQI trained with M = 2
• FQI4: GMFG-FQI trained with M = 4
• Q2: GMFG-Q trained with M = 2
• Q4: GMFG-Q trained with M = 4

• P: plays (a1, a2) = (0, 0)
• U: plays (a1, a2) ∼ U([0, 1]2)
• N: plays (a1, a2) ∼ N (0, I )

Exploitability
For each agent U we trained an agent E(U) which is trained as a RL agent (PPO1 with 2
layer Neural Network of 252 parameters each) on a MD2C platform with only the agent
U (already trained) and the agent E(U). Exploitability measures the robustness/safeness
of the policies.

1[Schulman et al., 2017]
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Results - Learned Policy
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Results
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Results - Exploitability

FQI4 FQI2 Q2 Q4 P0 U N

Dollar Reward 0.049 0.048 -0.002 0.021 0.009 0.018 0.026
Sharpe ratio 0.008 0.008 -0.0 0.002 0.001 0.002 0.002
Inventory std dev 0.01 0.01 0.019 0.019 0.02 0.019 0.019
Reward -15.871 -13.858 -49.19 -48.955 -49.812 -48.275 -45.943
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Conclusions
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Contributions and Future Works

Contributions
• Introduced a truly multi-agent setting in Dealer Markets
• Proposed the use of learning in GMFG to find the equilibrium profile
• Empirical validation of the methodology

Future Works
• Consider a portfolio of correlated assets
• Use other RL techniques (such as DeepRL) to solve the inner loop
• How to incorporate data into the framework?
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FQI-GMFG

Algorithm 2 FQI for GMFG

Require: Initial state-action distribution L0, simulator EL
1: for k ∈ [K ] do
2: Initialize Q̂k(s, a) = 0 ∀a ∈ A, s ∈ S
3: Generate dataset Dk = {(si , ai ,R(si , ai), s′i)}i∈[D]

4: for j ∈ [J ] do

5: Q̂k,j+1 = argmin
f∈F

∑
i∈D

(
f (si , ai)− ri − γmin

a∈A
Q̂k,j(s′, a)

)2

6: end for
7: Obtain Q̂k(s, a) = Q̂k,J (s, a) from FQI algorithm.
8: πk(s) = ϕτ (Q̂k(s, ·))
9: µk ←

∫
A
Lk(s, a)da

10: Initialize Lk+1(s, a) = 0 ∀a ∈ A, s ∈ S
11: for i ∈ [N ] do
12: si ∼ µk , ai ∼ πk(si)
13: s′i ← ELk (si , ai)
14: Lk+1(s′i , ai) = Lk+1(s′i , ai) +

1
N

15: end for
16: end for
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Q-GMFG

Algorithm 3 Q-learning for GMFG

Require: Initial state-action distribution L0, simulator EL
1: for k ∈ [K ] do
2: Initialize Q̂k(s, a) = 0 ∀a ∈ A, s ∈ S
3: for j ∈ [J ] do
4: Update the Q̂k(s, a) with Q-learning on the MDP defined by ELk

5: end for
6: πk(s) = ϕτ (Q̂k(s, ·))
7: µk ←

∫
A
Lk(s, a)da

8: Initialize Lk+1(s, a) = 0 ∀a ∈ A, s ∈ S
9: for i ∈ [N ] do

10: si ∼ µk , ai ∼ πk(si)
11: s′i ← ELk (si , ai)
12: Lk+1(s′i , ai) = Lk+1(s′i , ai) +

1
N

13: end for
14: end for
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Additional results
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Figure 1: Box-plot of the distribution of 1000 episodes of the Sharpe ratio S (a) and the inventory zt (b).
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Results
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Additional results on Mean Dollar Reward L

FQI_4 FQI_2 Q_2 Q_4 P0 U N

FQI_4 0.058 0.034 0.068 0.071 0.089 0.039 0.057
FQI_2 0.068 0.051 0.069 0.071 0.08 0.057 0.068
Q_2 0.036 0.031 0.047 0.041 0.053 0.043 0.041
Q_4 0.035 0.028 0.046 0.044 0.049 0.046 0.044

FQI_4,FQI_4,FQI_4 0.03 0.014 0.029 0.031 0.031 0.031 0.037
Q_4,Q_4,Q_4 0.013 0.007 0.016 0.021 0.009 0.023 0.033
U,U,U 0.01 0.007 0.023 0.013 0.015 0.019 0.037
P0,P0,P0 0.019 0.014 0.039 0.045 0.026 0.035 0.066
N,N,N 0.015 0.007 0.011 0.016 0.008 0.017 0.021

Max 0.068 0.051 0.069 0.071 0.089 0.057 0.068
Min 0.01 0.007 0.011 0.013 0.008 0.017 0.021
Mean 0.032 0.021 0.039 0.039 0.04 0.034 0.045
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Additional results on Mean Sharpe ratio S

FQI_4 FQI_2 Q_2 Q_4 P0 U N

FQI_4 0.011 0.008 0.009 0.009 0.012 0.006 0.008
FQI_2 0.011 0.01 0.009 0.01 0.011 0.007 0.009
Q_2 0.026 0.025 0.007 0.006 0.008 0.006 0.006
Q_4 0.025 0.023 0.007 0.006 0.007 0.007 0.006

FQI_4,FQI_4,FQI_4 0.008 0.006 0.004 0.004 0.004 0.004 0.004
Q_4,Q_4,Q_4 0.014 0.008 0.003 0.003 0.002 0.003 0.005
U,U,U 0.011 0.008 0.004 0.002 0.003 0.002 0.006
P0,P0,P0 0.021 0.017 0.006 0.007 0.004 0.005 0.009
N,N,N 0.011 0.005 0.002 0.003 0.001 0.003 0.004

Max 0.026 0.025 0.009 0.01 0.012 0.007 0.009
Min 0.008 0.005 0.002 0.002 0.001 0.002 0.004
Mean 0.015 0.012 0.006 0.006 0.006 0.005 0.006
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Additional results inventory standard deviation Z

FQI_4 FQI_2 Q_2 Q_4 P0 U N

FQI_4 0.01 0.008 0.013 0.013 0.012 0.013 0.013
FQI_2 0.011 0.01 0.013 0.012 0.012 0.012 0.013
Q_2 0.002 0.002 0.012 0.012 0.012 0.012 0.012
Q_4 0.002 0.002 0.012 0.012 0.012 0.012 0.012

FQI_4,FQI_4,FQI_4 0.008 0.005 0.013 0.013 0.013 0.013 0.013
Q_4,Q_4,Q_4 0.002 0.002 0.011 0.012 0.012 0.012 0.012
U,U,U 0.002 0.002 0.012 0.012 0.012 0.012 0.012
P0,P0,P0 0.002 0.002 0.012 0.012 0.012 0.012 0.012
N,N,N 0.003 0.002 0.012 0.012 0.012 0.012 0.012

Max 0.011 0.01 0.013 0.013 0.013 0.013 0.013
Min 0.002 0.002 0.011 0.012 0.012 0.012 0.012
Mean 0.005 0.004 0.012 0.012 0.012 0.012 0.012
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Additional results on Mean Reward R

FQI_4 FQI_2 Q_2 Q_4 P0 U N

FQI_4 -12.86 -7.845 -20.703 -19.897 -18.704 -20.908 -20.246
FQI_2 -15.542 -11.008 -19.668 -19.247 -19.109 -20.038 -20.931
Q_2 -0.408 -0.3 -17.995 -16.805 -18.332 -19.823 -18.28
Q_4 -0.559 -0.347 -16.288 -16.411 -17.977 -19.703 -18.434

FQI_4,FQI_4,FQI_4 -8.617 -2.357 -21.361 -21.076 -20.473 -19.996 -21.521
Q_4,Q_4,Q_4 -0.127 -0.137 -17.117 -18.001 -19.951 -18.028 -17.909
U,U,U -0.141 -0.116 -16.997 -18.438 -17.66 -17.611 -18.085
P0,P0,P0 -0.162 -0.117 -15.928 -17.355 -19.137 -17.999 -17.998
N,N,N -0.333 -0.322 -16.394 -17.562 -18.776 -17.62 -18.638

Max -0.127 -0.116 -15.928 -16.411 -17.66 -17.611 -17.909
Min -15.542 -11.008 -21.361 -21.076 -20.473 -20.908 -21.521
Mean -4.305 -2.505 -18.05 -18.31 -18.902 -19.081 -19.116
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Why Game Theory in Market Making?
Single agent optimization problems
• Environment is stochastic and

independent
• Environment does not adapt to your

actions

Pros
Easy/Close form solutions

Cons
• Interaction is reduced to background

noise
• Past "data" of the environment can not

describe future environments

Multi-agent optimization problems
• Environment is generated by the

actions of all the players
• Players adapt to the changes of

behaviour of all the players

Pros
Less assumptions/more realistic

Cons
• No concept of "best" action, because

best action depends on the aggregate
behaviour
• Computationally complex to "solve"
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