
`

Option Hedging with Risk Averse Reinforcement Learning

Edoardo Vittori

Based on a work done with Michele Trapletti and Marcello Restelli



`

1Outline

1

Option Hedging

Reinforcement Learning Intro

State of the Art

Risk Averse RL

Experimental results

Conclusions

Vittori Option Hedging with Risk Averse Reinforcement Learning



`

2Option Hedging
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Option hedging: trading the underlying asset in order to minimize the price swings
generated by the option (controlling risk).

Vittori Option Hedging with Risk Averse Reinforcement Learning



`

3Reinforcement Learning Intro
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Reward
P&L 

AGENT

Action
Hedging
portfolio

Environment

State
Market information

‚ the action at P r0, 1s the hedging portfolio

‚ the state st “ pSt, Ct,
BCt
BSt

, at´1q

‚ the reward Rpst, atq “ Ct`1pSt`1q ´ CtpStq ´ at ¨ pSt`1 ´ Stq ´ cpnq

‚ transaction costs cpnq “ 0.05 ¨ p|n| ` 0.01n2q, n “ at ´ at´1
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4Reinforcement Learning Intro
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Returns

Gpτq “
8
ÿ

t“0

γtRt

Action-Value function

Qπps, aq “ E
τ„π
rGpτq|s0 “ s, a0 “ as

Objective
J “ max

π
E
τ„π
rGpτqqs

Policy Search vs Value Based approaches
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5State of the Art
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Reinforcement Learning in Finance

RL in Hedging
‚ (Halperin, 2017)
‚ (Halperin, 2019)
‚ (Kolm and Ritter, 2019a)
‚ (Kolm and Ritter, 2019b)
‚ (Buehler et al., 2019)
‚ (Cao et al., 2019)

Risk Averse Reinforcement Learning

Reward volatility
‚ (Bisi et al., 2020)

Utility based
‚ (Moldovan and Abbeel, 2012)
‚ (Shen et al., 2014)

Coherent Risk Measures
‚ (Morimura et al., 2010)
‚ (Tamar et al., 2017)
‚ (Chow et al., 2017)

Variance of the returns
‚ (Sobel, 1982)
‚ (Tamar and Mannor, 2013)
‚ (Prashanth and Ghavamzadeh, 2014)
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6Variance/Volatility relation
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TRVO      Optimizing Return Variance

σ2π ď
ν2π

p1´ γq2
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7Reward Volatility
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Reward volatility

ν2π “ p1´ γq E
s0„µ

at„πp¨|stq
st`1„Pp¨|st,atq

«

8
ÿ

t“0

γt pRpst, atq ´ Jπq2
ff

Mean-volatility objective
ηπ :“ Jπ ´ λν

2
π

Trust Region Volatility Optimization-TRVO (Bisi et al., 2020)
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8Financial environment
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Vanilla call option

‚ time to maturity = 60 days

‚ unitary notional

‚ implied volatility = 20%

‚ interest rates = 0

‚ Kp“ S0q = 100

‚ starting price (ATM) option „ 3.24

‚ starting delta “ 0.5

Simulated Market

‚ geometric brownian motion
dSt “ µStdt` σStdWt

‚ no drift

‚ σ “ 20%

‚ S0 “ 100

‚ 5 time steps per day
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9Experimental Results: no Transaction Costs

9

1 50 100 150 200 250 300

0
0.

2
0.

4
0.

6
0.

8
1

time-step

ac
ti

on

delta hedge
model

´0.6 ´0.4 ´0.2 0 0.2 0.4 0.6 0.8

0%
10

%
20

%

p&l

delta
model

ñ delta hedge with no costs Ñ average p&l „ 0, volatility „ 0.16

Vittori Option Hedging with Risk Averse Reinforcement Learning



`

10Adding costs
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We considered h.c.„ 0.05|a|, „ the Euro Stoxx 50 or FTSE MIB future.

More liquid listed products (S&P 500) have lower minimal costs

Less liquid listed or OTC (vanilla, flow) instruments have significantly higher costs
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The agent now has something to
optimize: costs vs. volatility

Costs give a role to the risk aversion
factor
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11Experimental Results: with Transaction Costs
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12Experimental Results: Cost Analysis
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13Experimental Results: Pareto Plot

13

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

0.
00

0.
0
5

0.
1
0

0.
1
5

0.
20

10
9

6
5

4

3

2

1
0.825

0.75

0.5

delta hedge

σ

∆
p
&
l

average
confidence bounds

Vittori Option Hedging with Risk Averse Reinforcement Learning



`

14Conclusions
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Contributions

Proved experimentally that the hedging strategy learnt by the model dominates
the delta hedge

Future works

Extend to more complex derivatives

Extend to a portfolio of options

Decide not only how much but also when to hedge

Contacts

Edoardo Vittori - edoardo.vittori@polimi.it

Michele Trapletti - michele.trapletti@intesasanpaolo.com

Marcello Restelli - marcello.restelli@polimi.it
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