Machine Learning Algorithms for Financial Markets

Edoardo Vittori – Intesa Sanpaolo Matteo Rampazzo – Epsilon SGR

20th February, AAAI 24

Algorithms in the Financial Markets

Algorithms are becoming increasingly prevalent in the financial markets

Market

- The global algorithmic trading market reached a value of more than \$15B in 2023
- Market to grow at a CAGR of around 10%

- Optimal execution
- Market making
- Hedging
- Trading
- Portfolio optimization

Advantages

- Reduce response time
- Reduce operational errors
- Analyze data flow in real-time

D Challenges

- Overfitting
- Non-stationarity
- Simulating realistic markets

Schematic Overview of Financial Markets

Focus on the most influential actors

Decide the investment Decide trading strategy • Portfolio managers Traders strategy Higher frequencies, smaller . Low frequency, large sizes sizes Invest client liquidity Invest own liquidity • Optimizes execution by Execution engine splitting the order in time Financial markets can be: • Regulated exchanges such as: **Financial markets** NYSE, Nasdag, LSE, Euronext Multi-lateral trade facilities Dark pools . Provide liquidity to the financial markets . Market makers

•

•

•

Algorithmic Trading Technologies

Classification by technology type, with a focus on today's topics

Today's Tutorial

We will focus on three financial problems

RL and EL Intro

- Reinforcement Learning
- Expert Learning

Quantitative Trading

- Introduction to quantitative trading
- Trading strategy with reinforcement learning

Quantitative Investing

- From classical portfolio theory to online learning
- Best practices to build a robust portfolio optimization framework
- A real application

Optimal Execution

- The origins of price impact and the optimal execution setup
- Learning optimal execution

AGENDA

- RL and EL Intro

- Quantitative Trading
- Quantitative Investing
- Optimal Execution

Reinforcement Learning Basics

Markov Decision Process: process which describes interaction between agent and environment

- The objective is finding the policy *π* which maximizes the discounted sum of the rewards
- $J_{\pi} = \mathbb{E}_{\pi}[\Sigma \gamma^t R_t]$

Q-function and Policy

RL algorithms enable the learning of the policy $\boldsymbol{\pi}$

The objective is to find the π that maximises $J_{\pi} = \mathbb{E}_{\pi}[\Sigma \gamma^{t} R_{t}]$

Q-learning

Q-function

 $Q_{\pi} = \mathbb{E}_{\pi}[\sum \gamma^{t} R_{t} | s_{0}, a_{0}]$

Bellman Equation

 $Q_{\pi} = r(s, a) + \gamma \mathbb{E}_{s', a'}[Q_{\pi}(s', a')]$

Q-learning algorithm

 $Q_t(s,a) = r(s,a) + \gamma \max_{a'} Q_t(s',a')$

 Q-learning is a tabular algorithm which can be generalized using function approximators such as Xgboost.

Policy Search

- Policy gradient theorem $abla_{\theta} J_{\pi_{\theta}} = \mathbb{E}[\nabla \log \pi_{\theta}(a|s)Q_{\pi_{\theta}}(s,a)]$
- Policy update

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta J_{\pi_\theta}$$

• The policy is a parametric and differentiable function, usually a neural network

Creating a Trading Strategy with RL

Training, testing and use in production

Expert Learning / Online Learning

Algorithms which converge to the best expert

Characteristics

- Field of research close to RL
- Objective is to learn sequential decision processes
- Online algorithms
- Expert learning algorithms choose at each timestep which experts to follow
- Regret guarantees: finding the best expert in sub-linear time

• Regret
$$R_T = \sum_{t=1}^T f_t(a_t, y_t) - \inf_{e \in E} \sum_{t=1}^T f_t(a_{e,t}, y_t)$$

An Example of Expert Learning Algorithms

Exponential Weighted Average (EWA)

Pseudocode of EWA

- Initialize $w_1 = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$ uniformly over the experts (strategies) and pick η
- For $t \in \{1, ..., T\}$ do:
 - Collect experts' predictions $a_{e,t}$

• Play
$$a = \frac{\sum_i w_i a_i}{\sum_i w_i}$$

- Observe loss $x_i = f_i(a_i)$ of each expert
- Update weights with new information $w_{i,t} = w_{i,t-1}e^{-\eta * x_i}$

Characteristics

- The loss is a function of the current portfolio
- Regret $O(\sqrt{T\log(m)})$

Cesa-Bianchi, Nicolo, and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

Expert interaction scheme

Creating a Trading Strategy with Expert Learning

Tuning and use in production

AGENDA

- RL and EL Intro
- Quantitative Trading
- Quantitative Investing
- Optimal Execution

Introduction to Quantitative Trading

Defining and building a quantitative trading strategy

Quant Trading Definition

Quantitative trading uses mathematical and statistical models to identify trading opportunities

Common quantitative trading strategies

- Momentum
- Mean-reversion
- Statistical arbitrage
- Seasonality

Market making

Building a quant trading strategy

Rule-based Quantitative Trading Example

Mean reverting strategy - performance

Strategy description

- Positioning = $-\sum_{i=0}^{T-2} (T-i-1)R_{t-i}$
- $\mathbb{E}(P\&L) = \frac{1}{2}(TVar_1 Var_T \mu^2 T(T-1))$
- Asset: EURUSD FX spot
- Frequency: 10 minutes
- T = 120 minutes

T = time horizon in minutes R = returns $Var_1 = 1\text{-period variance}$ $Var_T = T\text{-period variance}$

P&L of backtest on 2021

Transaction costs

Each trade generates a cost proportional to the trade size

Example of LOB

Bid		Offer	
Volume	Price	Price	Volume
136	4044.50	4045.00	62
327	4044.00	4045.50	293
348	4043.50	4046.00	427
620	4043.00	4046.50	426
358	4042.50	4047.00	463
330	4042.00	4047.50	348
325	4041.50	4048.00	327
318	4041.00	4048.50	294
305	4040.50	4049.00	281
512	4040.00	4049.50	288

Defining Transaction Costs

- mid price = $\frac{1}{2}$ (best offer + best bid)
 - o 4044.75
- spread = (best offer best bid)
 - o 0.50
- transaction costs = trade size $*\frac{1}{2}$ spread
- step p&l = position * market movement transaction costs

Rule-based Quantitative Trading Example

Mean reverting strategy – performance with costs

Strategy description

- Positioning = $-\sum_{i=0}^{T-2} (T-i-1)R_{t-i}$
- Asset: EURUSD FX spot
- Frequency: 10 minutes
- T = 60 minutes
- Transaction costs: $\frac{1}{2}$ spread

Can we improve?

- Consider costs when generating the strategy?
- Move on from a strictly defined trading rule?

P&L of backtest trading on 2021

Reinforcement Learning for Quantitative Trading

Problem description and MDP definition

Quantitative Trading

Definition

 At each timestep, decide whether to go long, short or flat to maximize gains

MDP

- **State:** price window, bid-ask spread, current portfolio, date/time
- Action: long, short, flat
- Reward: P&L transaction costs

Characteristics

- Alpha seeking
- Low market correlation

Reinforcement Learning for FX Trading (1/2)

Experimental results - performance

Experiment

- Intraday trading on EURUSD FX
- Training with reinforcement learning on historical data 2018-2019
- Validation on historical data 2020
- Backtesting on historical data outof-sample 2021

P&L of backtest EURUSD FX trading on 2021

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021

Reinforcement Learning for FX Trading (2/2)

Experimental results - policy

Experiment

- Intraday trading on EURUSD FX
- Training with reinforcement learning on historical data 2018-2019
- Validation on historical data 2020
- Backtesting on historical data outof-sample 2021

Can we improve?

Market non-stationarity

Actions chosen by agent

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021

Reinforcement and Expert Learning for FX Trading

Experimental results - performance

P&L of backtest of RL strategies on 2021

Weight assigned to each RL strategy

Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts, ICAIF 2022

AGENDA

- RL and EL Intro
- Quantitative Trading
- Quantitative Investing
- Optimal Execution

What we'll cover today

AGENDA

\mathbf{Q} 01 From classical portfolio theory to online learning

- **02** Best practices to build a robust portfolio optimization framework
- **03** Use case

Introduction

- Allocate funds among a set of assets to target a specific goal such as
 - o having a balanced exposure on markets
 - o minimizing risk and diversify investments
 - o maximizing the portfolio return given a specific risk constraint

Introduction

- Allocate funds among a set of assets to target a specific goal such as
 - having a balanced exposure on markets
 - minimizing risk and diversify investments
 - o maximizing the portfolio return given a specific risk constraint

Introduction

- Allocate funds among a set of assets to target a specific goal such as
 - o having a balanced exposure on markets
 - o minimizing risk and diversify investments
 - o maximizing the portfolio return given a specific risk constraint

Naive Approaches	Risk Models	Expected Returns Models
Equally Weighted	Minimum Variance	Mean-Variance: Markowitz
• 60% Equity, 40% Bond	 Inverse volatility 	 Risk Budget with Expected Returns
• 120 minus your age	Equal Risk Contribution	
	L	· L

Introduction

- Allocate funds among a set of assets to target a specific goal such as
 - o having a balanced exposure on markets
 - o minimizing risk and diversify investments
 - o maximizing the portfolio return given a specific risk constraint

Naive Approaches	Risk Models	Expected Returns Models
Equally Weighted	Minimum Variance	Mean-Variance: Markowitz
• 60% Equity, 40% Bond	Inverse volatility	Risk Budget with Expected
• 120 minus your age	Equal Risk Contribution	Returns
	L	

The Standard Approach

Markowitz

 Classical portfolio optimization maximize the risk-adjusted return

 $\max \mu^T w - \gamma w^T \Sigma w \text{ subject to } \mathbf{1}^T w = 1, w \ge 0$

- Pitfalls:
 - Outputs are highly sensitive to expected returns estimates
 - Variance-covariance matrix requires lots of good data to be estimated
 - Implicit assumption of stable correlations
 - Single period framework

Models in Finance

Old problems...

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

Models in Finance

...new tools

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

- Leverage models that
 - o avoid the forecasting step
 - o are adaptive to markets
 - o don't need lots of data

Online Learning for Portfolio Optimization

A new paradigm

• Online Learning algos applied to portfolio optimization aim at maximizing the portfolio's expected growth rate in a multi-period scenario

 $\max \sum_{t=1}^{n} \log w_t x_t \text{ subject to } 1^T w = 1, w \ge 0$

- The general framework follows these steps:
 - Initialize weights: $w_1 = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$
 - For each time-period t = 1, 2, ..., n:
 - Start from the current portfolio positioning: w_t
 - Observe strategy returns x_t and the portfolio loss $f_t(w_t) = -\log w_t x_t$
 - Update the online portfolio weights

Online Learning for Portfolio Optimization

Algorithms: an example

Matteo Rampazzo

Online Learning for Portfolio Optimization

Algorithms classification

Models in Finance

Old problems...

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

- Leverage models that
 - o avoid the forecasting step
 - o are adaptive to markets
 - o don't need lots of data

• Overfitting

Overfitting

Old problems...

Lopez De Prado (2020), Machine Learning for Asset Managers, Cambridge Elements

Models in Finance

...new tools

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

──── <u>SOLUTION</u> ────

- Leverage models that
 - o avoid the forecasting step
 - o are adaptive to markets
 - o don't need lots of data

Overfitting

- Leverage robust approaches
 - o Simulation and synthetic data
 - Ensemble and stacking models
 - o Bootstrapping and synthetic data

AGENDA

- \bigcirc 01 From classical portfolio theory to online learning
- **02** Best practices to build a robust portfolio optimization framework
- **03** Use case

Model Calibration

A robust approach to parameter tuning

Objective

 Find parameters domain optimizing the trade-off between alpha generation, costs and models behavior

Methodology

- Generate synthetic data of the investable universe via Monte Carlo simulation
- Do a grid search over the parameters monitoring turnover dynamic
- Select a suitable parameter domain

Why is Turnover Important?

Transactions costs

Why is Turnover Important?

Transactions costs

Why is Turnover Important?

Learning rates and market regimes

Ensemble Models

Combining weak learners

(x, y) = model with parameters x and y

Matteo Rampazzo

Model Evaluation

Bootstrapping

Objective

 Check model robustness by looking at results distributions instead of a single point estimate

Methodology

- Run multiple simulations from observed data each time removing a random x% of the time series and thus creating a synthetic dataset
- Plot and evaluate results distributions

20th February, AAAI-24

AGENDA

- \bigcirc 01 From classical portfolio theory to online learning
- **02** Best practices to build a robust portfolio optimization framework

Methodology

Methodology

- Split markets into 4 business cycle phases
- Define one strategy for each regime
- Apply online algos to dynamically weight strategies

Model calibration

Model evaluation

Strategy P&L

Summary

A modern approach to disentangle markets complexity

don't need lots of data

• Overfitting

- Leverage robust approaches
 - o Simulation and synthetic data
 - Ensemble and stacking models
 - Bootstrapping and synthetic data

AGENDA

- RL and EL Intro
- Quantitative Trading
- Quantitative Investing
- Optimal Execution

Introduction to the Limit Order Book

Market and limit orders

Order types

- Market order is an order to execute immediately at the best price possible
- Limit order is an order that specifies both the price and volume of a trade
- A limit order sits in the order book until it is either executed against a matching market order or canceled

Example of Limit Order Book

Origins of Price Impact

Immediate market impact

Illustration of an immediate market impact

Origins of Price Impact

Temporary and permanent market impact

Obizhaeva Wang model of an exponential transient market impact

Illustration of a permanent market impact

Optimal Execution Setup

The three layers of the optimal execution problem

Goal: Sell (buy) shares $x_0 > 0$ by time T>0.

- An execution algorithm has three layers:
 - At the highest level: one decides how to slice the order, when to trade, in what size, and for how long.
 - At the mid-level: given a slice, one decides whether to place market or limit orders and at what price level(s).
 - At the lowest level: given a limit or market order, one decides to which venue(s) should this order be routed.

Smart Order Routing

Optimal execution setup

Optimal Execution Set-Up

Goal: Sell (buy) shares $x_0 > 0$ by time T>0 with N>0 timesteps.

- $X = (X_t)_{0 \le t \le T}$ the execution strategy.
- X_t is the inventory at time t where $X_0 = x_0$ and $X_T = 0$.
- $\widetilde{P}_t = (\widetilde{P}_t)_{0 \le t \le T}$ the transaction price.
- $\mathcal{R}(X) = -\int_0^T \widetilde{P}_t dX_t$ the generated revenue.
- TWAP: $(X_t) = \frac{x_0}{N} \forall t$

Edoardo Vittori

Execution trajectories

The Almgren-Chriss Model

A classical approach to the optimal execution problem

Almgren Chriss

- $P_t = (P_t)_{0 \le t \le T}$ the **observed**.
- $S_t = (S_t)_{0 \le t \le T}$ the **unaffected** mid-price (Becherer et al. 2018).
- $I_t = (I_t)_{0 \le t \le T}$ the price impact: $I_t = P_t S_t$
- Linear Impact Almgren-Chriss Model

$$I_t = \gamma [X_t - X_0] + \lambda \dot{X_t}$$

Execution trajectories

Beyond the Almgren-Chriss Model with RL

Can we learn a strategy which is not a deterministic function of time remaining?

Almgren Chriss

- $P_t = (P_t)_{0 \le t \le T}$ the **observed**.
- $S_t = (S_t)_{0 \le t \le T}$ the **unaffected** mid-price (Becherer et al. 2018).
- $I_t = (I_t)_{0 \le t \le T}$ the price impact: $I_t = P_t S_t$
- Linear Impact Almgren-Chriss Model

 $I_t = \gamma [X_t - X_0] + \lambda \dot{X_t}$

Execution trajectories

Augmenting Traders with Learning Machines, PhD Thesis, Edoardo Vittori, 2022

Reinforcement Learning for Optimal Execution

Problem definition and MDP description

Optimal Execution

Definition

- Execute X shares in N timesteps
- Decide at each timestep the trade to execute to minimize the difference between arrival and execution price

MDP

- **State:** Percentage holdings remaining, percentage time remaining, volume imbalance up to 5 levels of the limit order book, best bid price, best ask price.
- Action: do nothing, market order $Q_k = Q_{min} \times k$, $k = \{1, ..., 4\}$.
- Reward:

$$r_t = \underbrace{Q_t^k \times (P_0 - P_t)}_{t} - \underbrace{\alpha d_t}_{t}$$

implementation shortfall penalty

Limit Order Book Simulator

ABIDES – a multi-agent market simulator

Best Bid and Ask Prices from ABIDES Simulation.

Second Limit Bid and Ask Prices from ABIDES Simulation

Experimental Results

Return comparison between RL agent and benchmark on a market simulated with ABIDES

Characteristics

- Simulating with ABIDES the optimal execution exercise for 4 hours to execute 20k shares.
- $r_t = \underbrace{Q_t^k \times (P_0 P_t)}_{t} \underbrace{\alpha d_t}_{t}$

implementation shortfall penalty

Return distribution of a DQN agent compared to other benchmark strategies

Implementation shortfall reward distribution of a DQN agent compared to other benchmark strategies

Machine Learning Algorithms for Financial Markets

Q&A

Edoardo Vittori

Matteo Rampazzo

edoardo.vittori@intesasanpaolo.com

matteo.rampazzo@epsilonsgr.it

The opinions expressed in this document are solely those of the authors and do not represent in any way those of their present and past employers

