Machine Learning Algorithms for Financial Markets

Edoardo Vittori – Intesa Sanpaolo Matteo Rampazzo – Epsilon SGR

20th February, AAAI 24

Algorithms in the Financial Markets

Algorithms are becoming increasingly prevalent in the financial markets

Market

- The global algorithmic trading market reached a value of more than \$15B in 2023
- Market to grow at a CAGR of around 10%

- Optimal execution
- Market making
- Hedging
- **Trading**
- Portfolio optimization

- Reduce response time
- Reduce operational errors
- Analyze data flow in real-time

Advantages Challenges

- **Overfitting**
- Non-stationarity
- Simulating realistic markets

1

Schematic Overview of Financial Markets

Focus on the most influential actors

Portfolio managers Execution engine Market makers Financial markets • *Decide the investment strategy* • *Low frequency, large sizes* • *Invest client liquidity* • *Optimizes execution by splitting the order in time* • *Provide liquidity to the financial markets* Traders • *Decide trading strategy* • *Higher frequencies, smaller sizes* • *Invest own liquidity Financial markets can be:* • *Regulated exchanges such as: NYSE, Nasdaq, LSE, Euronext* • *Multi-lateral trade facilities* • *Dark pools*

Algorithmic Trading Technologies

Classification by technology type, with a focus on today's topics

3

Today's Tutorial

We will focus on three financial problems

- Reinforcement Learning
- **Expert Learning**

- Introduction to quantitative trading
- Trading strategy with reinforcement learning

RL and EL Intro Quantitative Trading Quantitative Investing Optimal Execution

- From classical portfolio theory to online learning
- Best practices to build a robust portfolio optimization framework
- A real application

- The origins of price impact and the optimal execution setup
- Learning optimal execution

AGENDA

ъoг ю

– **RL and EL Intro**

- Quantitative Trading
- Quantitative Investing
- Optimal Execution

Reinforcement Learning Basics

Markov Decision Process: process which describes interaction between agent and environment

- The objective is finding the policy π which maximizes the discounted sum of the rewards
- $J_{\pi} = \mathbb{E}_{\pi}[\Sigma \gamma^t R_t]$

Q-function and Policy

RL algorithms enable the learning of the policy π

The objective is to find the π that maximises $J_{\pi} = \mathbb{E}_{\pi}[\sum \gamma^t R_t]$

Q-learning

• Q-function

 $Q_{\pi} = \mathbb{E}_{\pi}[\sum \gamma^t R_t | s_0, a_0]$

Bellman Equation

 $Q_{\pi} = r(s, a) + \gamma \mathbb{E}_{s', a'}[Q_{\pi}(s', a')]$

• Q-learning algorithm

 $Q_t(s, a) = r(s, a) + \gamma \max_{a'} Q_t(s', a')$

• Q-learning is a tabular algorithm which can be generalized using function approximators such as Xgboost.

Policy Search

- Policy gradient theorem $\nabla_{\theta} J_{\pi_{\theta}} = \mathbb{E}[\nabla \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(s,a)]$
- Policy update

 $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J_{\pi_{\alpha}}$

The policy is a parametric and differentiable function, usually a neural network

Creating a Trading Strategy with RL

Training, testing and use in production

Expert Learning / Online Learning

Algorithms which converge to the best expert

- Field of research close to RL
- Objective is to learn sequential decision processes
- Online algorithms
- Expert learning algorithms choose at each timestep which experts to follow
- Regret guarantees: finding the best expert in sub-linear time

• **Regret**
$$
R_T = \sum_{t=1}^T f_t(a_t, y_t) - \inf_{e \in E} \sum_{t=1}^T f_t(a_{e,t}, y_t)
$$

An Example of Expert Learning Algorithms

Exponential Weighted Average (EWA)

Pseudocode of EWA

- Initialize $w_1 = \left(\frac{1}{m}\right)$ $\frac{1}{m}, \ldots, \frac{1}{m}$ $\frac{1}{m}$) uniformly over the experts (strategies) and pick η
- For $t \in \{1, ..., T\}$ do:
	- Collect experts' predictions $a_{e,t}$

$$
\circ \quad \text{Play } a = \frac{\sum_i w_i a_i}{\sum_i w_i}
$$

- Observe loss $x_i = f_i(a_i)$ of each expert
- Update weights with new information $w_{i,t} = w_{i,t-1}e^{-\eta * x_i}$

Characteristics

- The loss is a function of the current portfolio
- Regret $O(\sqrt{T \log(m)})$

Cesa-Bianchi, Nicolo, and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

Expert interaction scheme

Creating a Trading Strategy with Expert Learning

Tuning and use in production

AGENDA

ъoг ю

- RL and EL Intro
- Quantitative Trading
- Quantitative Investing
- Optimal Execution

Introduction to Quantitative Trading

Defining and building a quantitative trading strategy

Quant Trading Definition

Quantitative trading uses mathematical and statistical models to identify trading opportunities

Common quantitative trading strategies

- Momentum
- Mean-reversion
- Statistical arbitrage
- **Seasonality**

• Market making

Building a quant trading strategy

Rule-based Quantitative Trading Example

Mean reverting strategy - performance

Strategy description

- Positioning $=-\sum_{i=0}^{T-2}(T-i-1)R_{t-i}$
- $E(P&L) = \frac{1}{2}$ $\frac{1}{2}(TVar_1 - Var_T - \mu^2 T(T-1))$
- Asset: EURUSD FX spot
- Frequency: 10 minutes
- $T = 120$ minutes

 $T =$ time horizon in minutes $R =$ returns $Var_1 = 1$ -period variance $Var_T = T$ -period variance *Legend*

P&L of backtest on 2021

¹⁵ Transaction costs

Each trade generates a cost proportional to the trade size

Example of LOB Defining Transaction Costs

- mid price $=$ $\frac{1}{2}$ $\frac{1}{2}$ (best offer + best bid)
	- \circ 4044.75
- spread = (best offer $-$ best bid)
	- o 0.50
- transaction costs = trade size $*\frac{1}{2}$ $\frac{1}{2}$ spread
- step p&l = position ∗ market movement − transaction costs

Rule-based Quantitative Trading Example

Mean reverting strategy – performance with costs

Strategy description

- Positioning = $-\sum_{i=0}^{T-2}(T-i-1)R_{t-i}$
- Asset: EURUSD FX spot
- Frequency: 10 minutes
- \cdot T = 60 minutes
- Transaction costs: $\frac{1}{2}$ spread

Can we improve?

- Consider costs when generating the strategy?
- Move on from a strictly defined trading rule?

P&L of backtest trading on 2021

Reinforcement Learning for Quantitative Trading

Problem description and MDP definition

Quantitative Trading

Definition

• At each timestep, decide whether to go long, short or flat to maximize gains

MDP

- **State:** price window, bid-ask spread, current portfolio, date/time
- **Action:** long, short, flat
- **Reward:** P&L transaction costs

Characteristics

- Alpha seeking
- Low market correlation

Reinforcement Learning for FX Trading (1/2)

Experimental results - performance

Experiment

- Intraday trading on EURUSD FX
- Training with reinforcement learning on historical data 2018-2019
- Validation on historical data 2020
- Backtesting on historical data outof-sample 2021

P&L of backtest EURUSD FX trading on 2021

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021

Reinforcement Learning for FX Trading (2/2)

Experimental results - policy

Experiment

- Intraday trading on EURUSD FX
- Training with reinforcement learning on historical data 2018-2019
- Validation on historical data 2020
- Backtesting on historical data outof-sample 2021

Can we improve?

• Market non-stationarity

Actions chosen by agent

Learning FX Trading Strategies with FQI and Persistent Actions, ICAIF 2021

Reinforcement and Expert Learning for FX Trading

Experimental results - performance

P&L of backtest of RL strategies on 2021

Weight assigned to each RL strategy

Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts, ICAIF 2022

AGENDA

ъoг ю

- RL and EL Intro
- Quantitative Trading
- Quantitative Investing
- Optimal Execution

What we'll cover today **22**

AGENDA

\mathbf{Q} **01 From classical portfolio theory to online learning**

- 血 **02** Best practices to build a robust portfolio optimization framework
- \mathcal{Q} **03** Use case

Introduction

Objective

- Allocate funds among a set of assets to target a specific goal such as
	- o having a balanced exposure on markets
	- \circ minimizing risk and diversify investments
	- o maximizing the portfolio return given a specific risk constraint

Introduction

Objective

- Allocate funds among a set of assets to target a specific goal such as
	- o having a balanced exposure on markets
	- o minimizing risk and diversify investments
	- maximizing the portfolio return given a specific risk constraint

Naive Approaches Risk Models Expected Returns Models Equally Weighted • 60% Equity, 40% Bond • 120 minus your age • Minimum Variance Inverse volatility • Equal Risk Contribution • Mean-Variance: Markowitz • Risk Budget with Expected Returns

25

Introduction

Objective

- Allocate funds among a set of assets to target a specific goal such as
	- o having a balanced exposure on markets
	- o minimizing risk and diversify investments
	- o maximizing the portfolio return given a specific risk constraint

Introduction

Objective

- Allocate funds among a set of assets to target a specific goal such as
	- o having a balanced exposure on markets
	- o minimizing risk and diversify investments
	- o maximizing the portfolio return given a specific risk constraint

The Standard Approach

Markowitz

• Classical portfolio optimization maximize the risk-adjusted return

max $\mu^T w - \gamma w^T \Sigma w$ subject to $1^T w = 1, w \ge 0$

- Pitfalls:
	- o Outputs are highly sensitive to expected **returns estimates**
	- o Variance-covariance matrix requires **lots of good data to be estimated**
	- o Implicit assumption of **stable correlations**
	- o **Single period** framework

Models in Finance

Old problems…

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

Models in Finance

…new tools

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

- Leverage models that
	- o avoid the forecasting step
	- o are adaptive to markets
	- o don't need lots of data

30

Online Learning for Portfolio Optimization

A new paradigm

• **Online Learning algos** applied to portfolio optimization aim at maximizing the portfolio's expected growth rate in a multi-period scenario

```
max \sumt=1\boldsymbol{n}\log w_t x_t subject to 1^T w = 1, w \ge 0
```
- The general framework follows these steps:
	- o Initialize weights: $w_1 = \left(\frac{1}{m}\right)$ $\frac{1}{m}$, ..., $\frac{1}{m}$ \boldsymbol{m}
	- \circ For each time-period $t = 1, 2, ..., n$:
		- Start from the current portfolio positioning: W_t
		- Observe strategy returns x_t and the portfolio loss $f_t(w_t) = -\log w_t x_t$
		- Update the online portfolio weights

Online Learning for Portfolio Optimization

Algorithms: an example

Online Learning for Portfolio Optimization

Algorithms classification

Models in Finance

Old problems…

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

- Leverage models that
	- o avoid the forecasting step
	- o are adaptive to markets
	- o don't need lots of data

• Overfitting

Overfitting

Old problems…

Lopez De Prado (2020), Machine Learning for Asset Managers, Cambridge Elements

Models in Finance

…new tools

- Low signal-to-noise
- Reflexive and irrational markets
- Small data

- Leverage models that
	- o avoid the forecasting step
	- o are adaptive to markets
	- o don't need lots of data

Overfitting

- Leverage robust approaches
	- \circ Simulation and synthetic data
	- o Ensemble and stacking models
	- o Bootstrapping and synthetic data

AGENDA

- Ω **01** From classical portfolio theory to online learning
- $\widehat{\mathbb{m}}$ **02 Best practices to build a robust portfolio optimization framework**
- \mathcal{Q} **03** Use case

Model Calibration

A robust approach to parameter tuning

Objective

• Find parameters domain optimizing the trade-off between **alpha generation, costs and models behavior**

Methodology

- Generate **synthetic data** of the investable universe via Monte Carlo **simulation**
- Do a grid search over the parameters monitoring **turnover dynamic**
- Select a **suitable parameter domain**

Why is Turnover Important?

Transactions costs

Why is Turnover Important?

Transactions costs

40

Why is Turnover Important?

Learning rates and market regimes

Ensemble Models

Combining weak learners

 (x, y) = model with parameters x and y

Matteo Rampazzo **that in the controller in the controller of the controller of the COth February, AAAI-24 20th** February, AAAI-24

Model Evaluation

Bootstrapping

Objective

• Check **model robustness** by looking at results distributions instead of a single point estimate

Methodology

- Run multiple simulations from observed data each time removing a **random** x% of the time series and thus creating a **synthetic dataset**
- Plot and evaluate **results distributions**

AGENDA

- Ω **01** From classical portfolio theory to online learning
- m **02** Best practices to build a robust portfolio optimization framework

Methodology

Methodology

- Split markets into 4 business cycle phases
- Define one strategy for each regime
- Apply online algos to dynamically weight strategies

Model calibration

Model evaluation

Strategy P&L

Summary

A modern approach to disentangle markets complexity

Overfitting

- Leverage robust approaches
	- \circ Simulation and synthetic data
	- o Ensemble and stacking models
	- o Bootstrapping and synthetic data

AGENDA

ъoг ю

- RL and EL Intro
- Quantitative Trading
- Quantitative Investing
- Optimal Execution

Introduction to the Limit Order Book

Market and limit orders

Order types

- **Market order** is an order to execute immediately at the best price possible
- **Limit order** is an order that specifies both the price and volume of a trade
- A limit order sits in the order book until it is either executed against a matching market order or **canceled**

Example of Limit Order Book

Origins of Price Impact

Immediate market impact

Illustration of an **immediate** market impact

Origins of Price Impact

Temporary and permanent market impact

Illustration of a **permanent** market impact Obizhaeva Wang model of an exponential **transient** market impact

Optimal Execution Setup

The three layers of the optimal execution problem

Goal: Sell (buy) shares $x_0 > 0$ by time T>0.

- An execution algorithm has three layers:
	- o **At the highest level**: one decides how to slice the order, when to trade, in what size, and for how long.
	- o **At the mid-level**: given a slice, one decides whether to place market or limit orders and at what price level(s).
	- o **At the lowest level**: given a limit or market order, one decides to which venue(s) should this order be routed.

Smart Order Routing

Optimal execution setup

Optimal Execution Set-Up

Goal: Sell (buy) shares $x_0 > 0$ by time T > 0 with N > 0 timesteps.

- $X = (X_t)_{0 \le t \le T}$ the execution strategy.
- X_t is the inventory at time t where $X_0 = x_0$ and $X_T = 0$.
- $\widetilde{P}_t = (\widetilde{P}_t)_{0 \le t \le T}$ the transaction price.
- $\mathcal{R}(X) = -\int_0^T \widetilde{P}_t dX_t$ the generated revenue.
- TWAP: $(X_t) = \frac{x_0}{N}$ $\frac{10}{N}$ $\forall t$

20

 25

 30

 15

Time

0

 Ω

 $\overline{5}$

 10

The Almgren-Chriss Model

A classical approach to the optimal execution problem

Almgren Chriss

- $P_t = (P_t)_{0 \le t \le T}$ the **observed**.
- $S_t = (S_t)_{0 \le t \le T}$ the **unaffected** mid-price (Becherer et al. 2018).
- $I_t = (I_t)_{0 \le t \le T}$ the price impact: $I_t = P_t S_t$
- Linear Impact Almgren-Chriss Model

$$
I_t = \gamma [X_t - X_0] + \lambda \dot{X}_t
$$

Execution trajectories

Beyond the Almgren-Chriss Model with RL

Can we learn a strategy which is not a deterministic function of time remaining?

Almgren Chriss

- $P_t = (P_t)_{0 \le t \le T}$ the **observed**.
- $S_t = (S_t)_{0 \le t \le T}$ the **unaffected** mid-price (Becherer et al. 2018).
- $I_t = (I_t)_{0 \le t \le T}$ the price impact: $I_t = P_t S_t$
- Linear Impact Almgren-Chriss Model

Execution trajectories

Augmenting Traders with Learning Machines, PhD Thesis, Edoardo Vittori, 2022

Reinforcement Learning for Optimal Execution

Problem definition and MDP description

Optimal Execution

Definition

- Execute X shares in N timesteps
- Decide at each timestep the trade to execute to minimize the difference between arrival and execution price

MDP

- **State:** Percentage holdings remaining, percentage time remaining, volume imbalance up to 5 levels of the limit order book, best bid price, best ask price.
- **Action:** do nothing, market order $Q_k = Q_{min} \times k$, $k = \{1, ..., 4\}$.
- **Reward:**

$$
r_t = \qquad \underline{Q_t^k \times (P_0 - P_t)} \qquad - \quad \underline{\alpha} \underline{d_t}
$$

implementation shortfall penalty

Limit Order Book Simulator

ABIDES – a multi-agent market simulator

Best Bid and Ask Prices from ABIDES Simulation. Second Limit Bid and Ask Prices from ABIDES Simulation

Experimental Results

Return comparison between RL agent and benchmark on a market simulated with ABIDES

Characteristics

- Simulating with ABIDES the optimal execution exercise for 4 hours to execute 20k shares.
- $r_t =$ $Q_t^k \times (P_0 - P_t)$ $-\alpha d_t$

implementation shortfall penalty

Return distribution of a DQN agent compared to other benchmark strategies

Implementation shortfall reward distribution of a DQN agent compared to other benchmark strategies

Machine Learning Algorithms for Financial Markets

Q&A

Edoardo Vittori

Matteo Rampazzo

edoardo.vittori@intesasanpaolo.com

matteo.rampazzo@epsilonsgr.it

The opinions expressed in this document are solely those of the authors and do not represent in any way those of their present and past employers