fl Optimal Execution via Reinforcement
il Learning in Agent Based Simulations

Yadh Hafsi
Edoardo Vittori

International Fintech Research Conference
31st January




Introduction

Optimal Execution with reinforcement learning is a growing stream of literature

Definition of optimal execution Why reinforcement learning

Given a trade to execute in a specified
amount of time, minimize market impact and
transaction costs

« Learn a state-based execution policy
« No assumptions on the market simulation

Execution trajectories . : .
4 Optimal execution literature
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Reinforcement Learning for Optimal Execution

Problem definition and MDP description

Reinforcement learning basics

®* MDP: process which describes interaction
between agent and environment

discounted sum of the rewards

*  J.=E.[Z;y'r], with the reward attime i as r;

____________________________________________________________

Optimal Execution MDP

* State: holdings, time remaining, current LOB
state

® Action: market order of 4 different sizes
QF x (Py — P,) - ad

——

* Reward: r; =

implementation shortfall penalty
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®* Objective: find the policy m which maximizes the

-

MDP interaction scheme
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The Limit Order Book

Market and limit orders

+ Order types |

* Market order is an order to execute
immediately at the best price possible

* Limit order is an order that specifies
both the price and volume of a trade

* Alimit order sits in the order book until it
is either executed against a matching |
market order or canceled ;

_______________________________________________________
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Trading in the LOB

A large buy order may cause the mid price to move (immediate market impact)

LOB at time't LOB at time t+1

Buy market order

volume v
volume v

( bids ) ( asks ) ( bids ) ( asks )

The execution price of a market order of size V iS X, _ eve1s PiVi SUCh that X jevers Vi =V
Reward: r, = QF x (Py — P,) - od,
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Simulating the LOB

There are three main approaches to simulating LOBs

_______________________________________________________

Models for LOB simulation

¢ Stochastic models: represent the
dynamics of the LOB using probabilistic
processes

®* Machine Learning models: learn
simulated market behavior directly from
historical data

* Agent based models: simulate the
interactions of autonomous agents,
each following a set of rules or
strategies
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Experimental Setting

Execution setup

®* Buy 20k shares

¢ 30 minutes

* 1-second timesteps

® Actions: do nothing, buy 20, 40, 60, 80

Baseline algorithms

*  TWAP: execute 20k/(30*60) at each
timestep

®* Passive algorithm: 60% do nothing, 40%
random action

®* Random algorithm: randomly selects an
action

® Aggressive algorithm: buy 40 each
second
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RL Algorithm
* Q-learning: Q;(s,a) = r(s,a) + ymax Q.(s’,a’)
a

°* DON

1: Initialize replay memory D to capacity N

2: Initialize action-value function () and target @ with random weights
3: for episode =1to M do

4: Initialize state s

5 fort=1toTdo

6: With probability € select a random action a;

7: Otherwise select a; = arg max, Q(s;,a; )

8 Execute action a;

9 Observe reward 7; and next state s;;

10: Store transition (s, at, r¢, S¢+1) in D

11: Sample random minibatch of transitions (s;, a;, 7}, s;41) from D
12: Sety; = r; +ymaxy Q(s;11,a’;6)

13: Perform a gradient descent step on (y; — Q(s;,a;;6))*

14: Every C steps reset QO=Q

15: end for

16: end for



Experimental Results (1/3)

The RL agent executes a significant portion of its holdings rapidly

Learning curves

Execution trajectory
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Experimental Results (2/3)

The RL agent trades close to the arrival price but widens the spreads

Distribution of implementation shortfall Q¥ x (P, — P,) Distribution of bid-ask spread
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Experimental Results (3/3)

The RL agent manages to minimize market impact

Distribution of ask imbalance, 5 levels
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