# **Optimal Execution via Reinforcement Learning in Agent Based Simulations**

Yadh Hafsi Edoardo Vittori

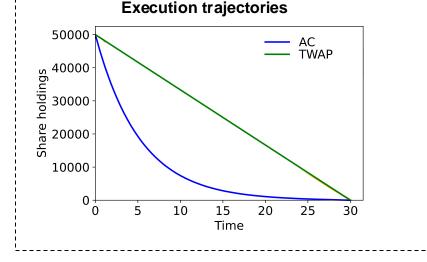
International Fintech Research Conference 31<sup>st</sup> January

### Introduction

Optimal Execution with reinforcement learning is a growing stream of literature

#### Definition of optimal execution

Given a trade to execute in a specified amount of time, minimize market impact and transaction costs



#### Why reinforcement learning

- Learn a state-based execution policy
- No assumptions on the market simulation

#### **Optimal execution literature**

- Karpe, Fang, Ma, Wang. 2020
- Ning, Lin, Jaimungal. 2018
- Hendricks and Wilcox. 2014
- Nevmyvaka, Feng, Kearns. 2006
- Almgren and Chriss., 2001
- Bertsimas and Lo., 1998

# **Reinforcement Learning for Optimal Execution**

Problem definition and MDP description

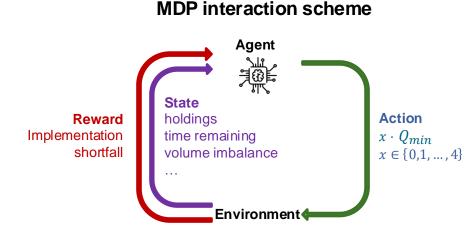
### **Reinforcement learning basics**

- *MDP*: process which describes interaction between agent and environment
- Objective: find the policy  $\pi$  which maximizes the discounted sum of the rewards
- $\hat{J}_{\pi} = \mathbb{E}_{\pi}[\sum_{i} \gamma^{i} r_{i}]$ , with the reward at time *i* as  $r_{i}$

### **Optimal Execution MDP**

- *State*: holdings, time remaining, current LOB state
- Action: market order of 4 different sizes
- Reward:  $r_t = \underbrace{Q_t^k \times (P_0 P_t)}_{t} \underbrace{\alpha d_t}_{t}$

implementation shortfall penalty

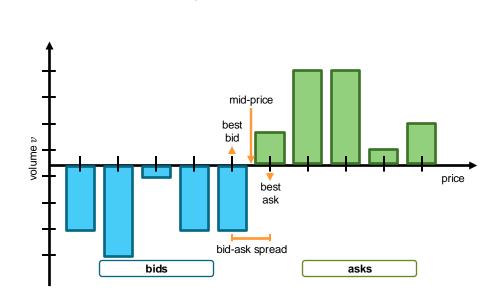


### **The Limit Order Book**

Market and limit orders

#### Order types

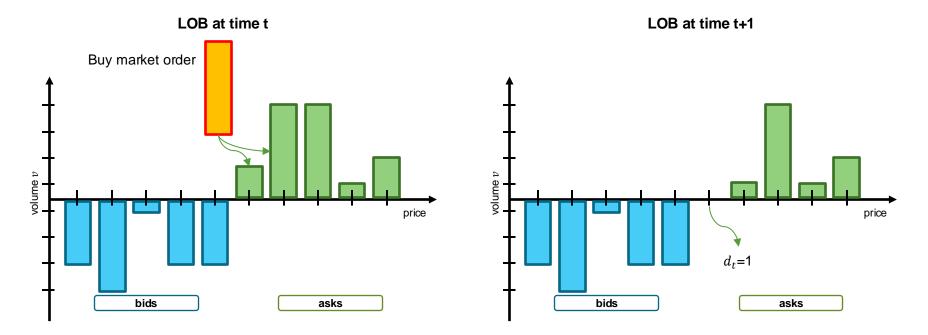
- Market order is an order to execute immediately at the best price possible
- Limit order is an order that specifies both the price and volume of a trade
- A limit order sits in the order book until it is either executed against a matching market order or canceled



#### Example of Limit Order Book

# **Trading in the LOB**

A large buy order may cause the mid price to move (immediate market impact)



- The execution price of a market order of size V is  $\sum_{i=\text{levels}} p_i v_i$  such that  $\sum_{i=\text{levels}} v_i = V$
- Reward:  $r_t = Q_t^k \times (P_0 P_t) \alpha d_t$

Edoardo Vittori

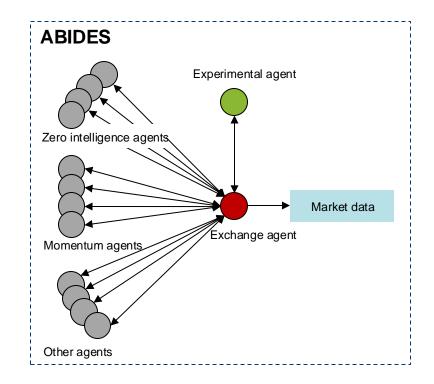
implementation shortfall penalty

# **Simulating the LOB**

There are three main approaches to simulating LOBs

#### Models for LOB simulation

- Stochastic models: represent the dynamics of the LOB using probabilistic processes
- Machine Learning models: learn simulated market behavior directly from historical data
- Agent based models: simulate the interactions of autonomous agents, each following a set of rules or strategies



### **Experimental Setting**

#### **Execution setup**

- Buy 20k shares
- 30 minutes
- 1-second timesteps
- Actions: do nothing, buy 20, 40, 60, 80

### **Baseline algorithms**

- TWAP: execute 20k/(30\*60) at each timestep
- Passive algorithm: 60% do nothing, 40% random action
- Random algorithm: randomly selects an action
- Aggressive algorithm: buy 40 each second

### **RL Algorithm**

• Q-learning:  $Q_t(s, a) = r(s, a) + \gamma \max_{a'} Q_t(s', a')$ 

#### • DQN

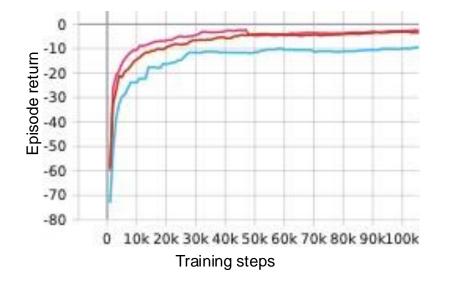
| 1:  | Initialize replay memory $D$ to capacity $N$                                        |
|-----|-------------------------------------------------------------------------------------|
|     | Initialize action-value function $\hat{Q}$ and target $\hat{Q}$ with random weights |
|     | for episode = 1 to M do                                                             |
| 4:  | Initialize state $s_1$                                                              |
| 5:  | for $t = 1$ to T do                                                                 |
| 6:  | With probability $\epsilon$ select a random action $a_t$                            |
| 7:  | Otherwise select $a_t = \arg \max_a Q(s_t, a; \theta)$                              |
| 8:  | Execute action $a_t$                                                                |
| 9:  | Observe reward $r_t$ and next state $s_{t+1}$                                       |
| 10: | Store transition $(s_t, a_t, r_t, s_{t+1})$ in D                                    |
| 11: | Sample random minibatch of transitions $(s_j, a_j, r_j, s_{j+1})$ from D            |
| 12: | Set $y_j = r_j + \gamma \max_{a'} \hat{Q}(s_{j+1}, a'; 	heta)$                      |
| 13: | Perform a gradient descent step on $(y_j - Q(s_j, a_j; \theta))^2$                  |
| 14: | Every C steps reset $\hat{Q} = Q$                                                   |
| 15: | end for                                                                             |
| 16: | end for                                                                             |
|     |                                                                                     |
|     |                                                                                     |

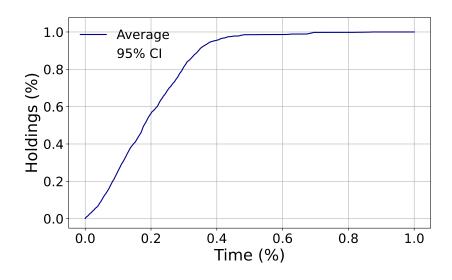
# **Experimental Results (1/3)**

The RL agent executes a significant portion of its holdings rapidly

#### Learning curves

**Execution trajectory** 

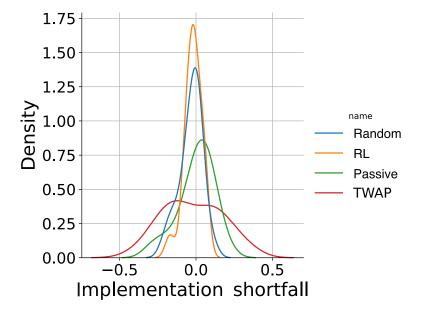




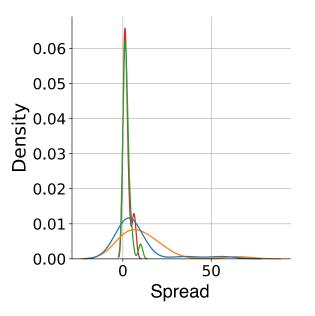
### **Experimental Results (2/3)**

The RL agent trades close to the arrival price but widens the spreads

#### Distribution of implementation shortfall $Q_t^k \times (P_0 - P_t)$

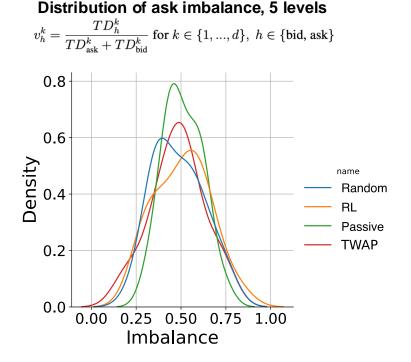


#### Distribution of bid-ask spread

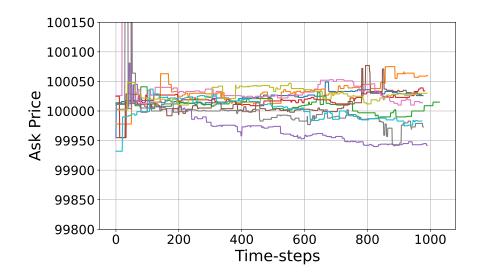


# **Experimental Results (3/3)**

The RL agent manages to minimize market impact



#### Ask prices during execution



### **Optimal Execution via Reinforcement Learning in Agent Based Simulations**

# Q&A

### Contacts

Edoardo Vittori edoardo.vittori@intesasanpaolo.com

Yadh Hafsi yadh.hafsi@universite-paris-saclay.fr arXiv link



The opinions expressed in this document are solely those of the authors and do not represent in any way those of their present and past employers

